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We analyze the Moore-Read Pfaffian state on a thin torus. The known sixfold degeneracy is realized by two
inequivalent crystalline states with a four- and twofold degeneracy, respectively. The fundamental quasihole
and quasiparticle excitations are domain walls between these vacua, and simple counting arguments give a
Hilbert space of dimension 2n−1 for 2n−k holes and k particles at fixed positions and assign each a charge
±e /4. This generalizes the known properties of the hole excitations in the Pfaffian state as deduced using
conformal field theory techniques. Numerical calculations using a model Hamiltonian and a small number of
particles support the presence of a stable phase with degenerate vacua and quarter-charged domain walls also
away from the thin-torus limit. A spin-chain Hamiltonian encodes the degenerate vacua and the various domain
walls.
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One of the most intriguing aspects of the quantum Hall
�QH� system is the possibility of experimentally observing
non-Abelian statistics. In particular, it has been proposed that
the fractional filling part of the observed1 �=5/2 state is well
described by the non-Abelian Moore-Read, or Pfaffian, wave
function,2

�Pf��zi�� = Pf� 1

zi − zj
��1/2, �1�

where �1/2 is the bosonic Laughlin state at �=1/2 and zi are
the complex electron coordinates in the plane. By now, a
great deal has been learned about �1� and its quasihole exci-
tations, and we list some of the pertinent results. �1� Equa-
tion �1� is the exact ground state of a certain local three-body
interaction.3,4 �2� There are six degenerate ground states on a
torus, and the electronic wave functions are explicitly
known.3 �3� The quasiholes have charge e /4 and can only be
created in pairs.1 The dimensionality of the Hilbert space for
2n holes at fixed positions in the plane is 2n−1, and the wave
functions in a particular “preferred basis” have been
constructed.5,6 �4� The quasihole wave functions are the con-
formal blocks of a correlator in a c=3/2 rational conformal
field theory involving a bosonic vertex operator and a Majo-
rana fermion. The conformal blocks have been explicitly
constructed for four holes, where the Hilbert space is two
dimensional. The braiding properties, or monodromies, of
the conformal blocks translate into non-Abelian statistics for
the quasiholes.2,7 �5� The ground state in Eq. �1� can be
viewed as a triplet pairing state of composite fermions, and
the quasiholes as vortex excitations. The pairing picture
nicely explains the presence of quarter-charged holes.3,8

Finally we should mention that the great recent interest in
the non-Abelian QH states has to a large extent been spurred
by the proposals to use them to build decoherence-free quan-
tum computational devices.9

Recently, it was shown that studying the lowest Landau
level �LLL� on a thin torus, with circumference L1, allows
for both a simple understanding of already established phe-
nomena, and arriving at new results.10,11 In particular, it was
shown how the states in the Jain series12 �= p / �2pm+1� be-

come gapped crystals, with a unit cell of length 2pm+1 �in
units of the lattice spacing� and the fractionally charged ex-
citations appear as domain walls between the 2pm+1 differ-
ent translational states of this crystal. In the infinitely thin
limit, the �=1/2 state also forms a crystal, which, however,
melts at L1�5.3 �lengths are measured in units of the mag-
netic length�, and a gapless homogeneous state of neutral
fermions forms. All these properties are consistent with
known properties of the bulk Laughlin and Jain states, and
give a concrete realization of the dipole picture of the gapless
�=1/2 state. There is strong evidence, analytical and nu-
merical, that all these states develop continuously into the
bulk states as L1→�.11,13,14 In summary, we consider it es-
tablished that the main qualitative features of the bulk
Laughlin and Jain states and the gapless �=1/2 state are
present on the thin torus and that there is no phase transition
as the two-dimensional bulk case is approached.

In light of the above, we have studied the torus generali-
zation of the Pfaffian state �1� and its excitations on a thin
torus. Despite recent progress in the construction of quasi-
particle states,15 much more is known about quasiholes than
about quasiparticles in the QHE effect. However, our con-
struction is manifestly particle-hole symmetric and allows
for a unified description of quasiholes and quasiparticles.
The analysis, to be given below, results in a simple and in-
tuitive picture of the degenerate ground states, and the quasi-
holes and quasiparticles as domain walls between them. We
obtain the general 2n−1-fold degenerate state with k quasi-
holes and 2n−k quasiparticles. Using exact numerical diago-
nalization, we find that for a certain range of pseudopotential
parameters these quarter-charged particles and holes are the
lowest-energy excitations of systems with a small number of
particles also at finite L1.

Defining the magnetic translation operators t1=e�L1/Ns��x,
t2=e�L2/Ns���y+ix�, appropriate to the Ay =0 �Landau� gauge, a
basis of lowest-Landau-level single-particle states on a torus
�L1 ,L2� is given by �k= t2

k�0, k=0,1 , . . . ,Ns−1, where �0

=�−1/4L1
−1/2�neinL2xe−�y + nL2�2/2. Here �k is located along the

line y=−2�k /L1 and is a t1 eigenstate, t1�k=ei2�k/Ns�k. The
quantum number k thus labels both the position in the y
direction and the momentum in the x direction. The many-

PHYSICAL REVIEW B 74, 081308�R� �2006�

RAPID COMMUNICATIONS

1098-0121/2006/74�8�/081308�4� ©2006 The American Physical Society081308-1

http://dx.doi.org/10.1103/PhysRevB.74.081308


body translation operators T�=	i=1
Ne ti� �ti� translates electron

i� commute with a translationally invariant electron interac-
tion Hamiltonian H.

A general Ne-particle state in the LLL is a linear combi-
nation of states det(�k1

�1�¯�kNe
�Ne�), here labeled by

n0n1¯nNs−1, where nk=0,1 and �k=0
Ns−1nk=Ne; T2 generates

translations: T2n0n1¯nNs−1=nNs−1n0¯nNs−2. As L1→0 hop-
ping becomes unimportant and all energy eigenstates have
the charges frozen in a regular lattice determined by the elec-
trostatic interaction. In a half-filled Landau level the ground
state is 101010¼—this is the obvious one-dimensional limit
when the electrons interact via a generic repulsive interac-
tion. The interesting question now is what happens when the
length L1 moves away from zero. In Ref. 10 it was shown
that, as hopping becomes more important, and for an un-
screened Coulomb interaction at �=1/2, a gapless state ob-
tained from the maximally hoppable state 01100110¼0110
wins over the gapped crystal at L1
5.3, and it was later
shown11 that the resulting Luttinger-liquid-type state is well
described by a Fermi sea of composite fermions of the
Rezayi-Read type.16 From exact diagonalization studies us-
ing an unscreened Coulomb potential, one also learns that
the gapless Rezayi-Read state is good at �=1/2, while at �
=5/2 the gapped Pfaffian state is favored.4,17 The difference
between the two cases is due to the modifications in the
short-distance interaction caused by the different one-particle
states in the two Landau levels.

On the torus, the Pfaffian state is sixfold degenerate rather
than only twofold as implied by the center-of-mass degen-
eracy. The technical reason for having the extra states is that

on the torus, �Pf=Pf� 1
zi−zj

��1/2→Pf� �a�zi−zj�

�1�zi−zj�
��1/2

�t� , where

�1/2
�t� is the torus version of �1/2, and �a�z� are Jacobi theta

functions.3 The extra threefold degeneracy corresponds to a
=2,3 ,4. Since the Pfaffian state is gapped it is tempting to
identify it with the crystalline state A=010101. . .01 in the
thin limit, but this, and its translated twin T2A, account for
only two of the six ground states. Natural candidates for the
other four are the four translations T2

kB , k=0,1 ,2 ,3 of the
state B=01100110. . .0110. We have explicitly verified that
these are the six ground states by projecting the Pfaffian state
onto a single-particle basis and studying the thin limit: a=2
gives the two A states, whereas a=3,4 give the four B states.
Note that all the six ground states have the property that any
four adjacent sites are populated by exactly two particles,
and that they are the unique states with this property.21

In a state formed by joining different ground states
ABAB. . ., domain walls with three and one electron on four
adjacent sites, AB�1011 and BA�0010, respectively, are
created,

AB = 01010101100110011001100101010101. �2�

�Note that because of the periodic boundary conditions both
domain walls are present in the AB state.� It follows from the
Su-Schrieffer counting argument18 that these domain walls
have fractional charge −e /4 and e /4, respectively.22 Thus the
state ABAB . . .B has an alternating sequence of positive and
negative quarter charges—AB, in particular, contains one
quasiparticle-quasihole pair.

The fourfold degeneracy of B compared to the twofold
degeneracy of A leads to a degeneracy of the states with four
or more excitations. Imagine inserting B strings in a given A
background. This can in general be done in two different
ways as illustrated by the following example:

�ABAB�1 = 0101011001100101010101100110010101

� 0101010110011001010101011001100101,

�ABAB�2 = 0101011001100101010101011001100101,

�3�

where the � sign denotes equality up to a total translation.
The single particle-hole state AB in �2� is thus unique up to a
translation, while the two states �ABAB�1 and �ABAB�2 can-
not be translated into each other. Generalizing this we con-
clude that there are 2n−1 states of n particle-hole pairs at fixed
positions. In comparing the two states above, we notice that
they differ only in that one of the B segments is translated
two lattice spacings. One might worry that this just corre-
sponds to a shift of the positions of the domain walls, and
would not imply the existence of many states at fixed posi-
tions. Note, however, that no combination of rigid transla-
tions and local motion of the domain walls �where they stay
separate� can transform the states into each other, and thus
they belong to different topological sectors.23

To obtain general states with quasiholes and/or quasipar-
ticles one must insert extra empty sites and/or electrons. De-
fine A0=A0=0101. . .010 and A1=1A=10101. . .01. The state
A0 has one extra 0 inserted—this excitation has, again by a
straightforward counting argument, charge e /2. Similarly, A1
has an excitation with charge −e /2. Joining these with B one
obtains the new domain walls A0B�0100, BA1�1101 with
charges e /4 and −e /4, respectively. The domain walls BA0
�BA�0010 and A1B�AB�1011 are the same as those al-
ready present in AB �Eq. �2�
. Examples of a two-quasihole
and of a two-quasiparticle state are

A0B = 01010100110011001100110010101,

A1B = 10101010110011001100110101010. �4�

A state with an arbitrary number of quarter-charged holes
and particles, in arbitrary positions, can be formed as
X1BX2B . . .XnB, where Xi� �A ,A0 ,A1�. Again disregarding a
rigid translation, this state is 2n−1-fold degenerate for fixed
positions of the particles and holes.

In particular, the 2n quasihole states are A0BA0B . . .B
with degeneracy 2n−1 as for the 2n-hole Pfaffian state on
the plane. For eight and 16 electrons, we have also
explicitly verified that these states emerge as the leading
terms in the thin-torus limit for the Pfaffian wave functions
with two e /4 quasiholes �where �a�zi−zj� is replaced by
�a(zi−zj +

1
2 ��1−�2�)�1�zi−�1��1�zj −�2� and the center-of-

mass coordinate becomes Z=�izi+
1
4 ��1+�2� �Ref. 3�
.

The six Pfaffian states are the exact ground states of a
hyperlocal three-body interaction on the torus4—this holds
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for general L1 as it depends on the local properties only.
The lattice Hamiltonian24 takes the form H3
=��ki�

V�ki�
ck1

† ck2

† ck3

† ck4
ck5

ck6
with

V�ki�
	 
k123,k456

k12k13k23k45k46k56

�exp�− 2�2��
i

ki
2 −

1

6��i

ki�2�� L1
2� ,

where kij =ki−kj and kijk=ki+kj +kk. In the thin-torus limit,
this implies that the electrostatic energy is minimized by
minimizing the number of sequences of four consecutive
sites containing three electrons �or holes�. The six states A
and B above are the unique states at half filling that have no
such sequences.25 Such sequences of electrons �holes� are
also absent from the states with quasiholes �quasiparticles�.

We have performed exact diagonalization studies of small
systems that corroborate the picture given above. Following
Rezayi and Haldane4 we consider the electron gas on the
torus as a function of the pseudopotential parameter 
V1 and
find that the six Pfaffian states are favored for a finite range
in parameter space; see Fig. 1. In particular, as the torus
becomes thin, these states continuously approach the crystal-
line states proposed above. Exactly at half filling we find that
the low-lying excited energy states are consistent with the
creation of a single quasiparticle-quasihole pair. Due to their
opposite charge they attract each other and the very lowest
energies are obtained when they overlap. However, the entire

low-energy spectrum is built up of states with different sepa-
rations between the particle-hole pair. Slightly away from
half filling we find ground states that have well-separated
quasihole or quasiparticle excitations upon a Pfaffian back-
ground. In systems with two quasiholes, the formation of e /4
charges is very clear and also stable as L1 increases from
zero. As an example we find that the ground state of the �
=8/17 system with just eight particles evolves continuously
from 01100110010101010 �i.e., a state with two e /4 quasi-
holes as far apart as possible� into a charge-density-wave
state with the same symmetry. This density wave is seen
clearly throughout the Pfaffian phase in Fig. 1. Of course, we
find—consistent with particle-hole symmetry—the same sce-
nario in terms of −e /4 quasiparticles for �=9/17. Further-
more, we find that the lowest-lying excitations of these sys-
tems are those that move the ±e /4 charges closer together.

In Ref. 10 it was shown that for �=1/2, and a particular
choice of short-range Hamiltonian relevant for a thin torus
the system can be written as a spin-half XY chain by the
mapping 10→↑, 01→↓. A spin flip ↑↓↔↓↑ corresponds to
the nearest-neighbor hopping 1001↔0110 and the ground
state emerges from the maximally hoppable state B. By stan-
dard techniques the spin chain can be mapped onto free fer-
mions, and it is natural to assume that a more general Hamil-
tonian will correspond to a Luttinger liquid.

The most obvious way to generalize this description to the
Pfaffian state is to consider the phase diagram for the spin-
half model in the presence of anisotropic and more long-
range interactions. In addition to the gapless Luttinger liquid
phase there are at least two gapped phases: the Ising phase,
which will always win in the extreme thin-torus limit, and a
spin-Peierls phase. The latter is, however, not a candidate for
the Pfaffian state; the spin pairing breaks translational invari-
ance, the ground-state degeneracy on a torus is not six, and
there are no quarter-charged holes. It is an open question
whether there is a QH counterpart to the spin-Peierls state.

The origin of these difficulties is that the above mapping
of two sites to a single spin does not allow for domain walls.
To overcome this, we map each site to a spin such that the
occupation number gives the z component, �i

z=2ni−1. Re-
membering that the ground states are the states where any
four adjacent sites have exactly two particles, suggests the
Hamiltonian Hp=V�i��i

z+�i+1
z +�i+2

z +�i+3
z �2, where V
0,

which clearly has the correct ground states. A quarter-
charged quasiparticle �hole� has one quadruple of sites with
three electrons �holes�; hence its excitation energy is 4V.
This spin model is a frustrated antiferromagnetic spin chain,
as can be seen by rewriting the Hamiltonian as Hp
=2V�i�3�i

z�i+1
z +2�i

z�i+2
z +�i

z�i+3
z �+const. The kinetic Hamil-

tonian 0110↔1001 is unfortunately somewhat complicated,
Hk= t�i��i

+�i+1
− �i+2

− �i+3
+ +H.c.�. The hopping term lifts the de-

generacy of the six ground states—this can, however, be
compensated for by fine-tuning the �i

z� j
z couplings.

In summary, we have presented a simple way to under-
stand the vacuum degeneracy and the ±e /4-charged quasi-
particles and holes of the Pfaffian wave function in the thin-
torus limit. We have also given numerical evidence for this
fractionalized phase to survive as the torus becomes thicker.
In particular we found that the internal Hilbert space of a
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FIG. 1. �Color online� Phase diagram for a half-filled Landau
level on the torus as a function of L1 and the pseudopotential pa-
rameter 
V1 �
V1=0 corresponds to Coulomb interaction in the
lowest LL�. Results are obtained using exact diagonalization for
eight electrons. The Pfaffian phase is found in the central part �solid
lines� of the diagram. This is the region where the six lowest-lying
states are those that continuously approach the crystals A and B.
Within the dashed lines, these states are almost degenerate—they
differ in energy by less than 10% of the gap to the next state. In the
Pfaffian phase we observe quasiparticles and quasiholes of charge
±e /4. In the top left the ground state is 101010¯ and the phase in
the top right is the gapless Luttinger liquid phase described in
Ref. 10.
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configuration of 2n particles and/or holes is 2n−1, and we
should again stress that the quasiparticles enter in a natural
way in our description. That the degeneracy of the internal
quasihole Hilbert space agrees with the bulk state strongly
suggests that the non-Abelian statistics also is present in the
thin-torus limit. Since the configuration space is one dimen-
sional and discrete, it is not clear how to define non-Abelian
statistics, but we might speculate that it would be encoded in

properties of the �rather complicated� spin chain defined
above.

Recently we became aware that Haldane has obtained re-
sults similar to those presented here,19 and a closely related
study of the bosonic Pfaffian state at �=1 appeared shortly
after our work.20
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