Slide 1 of 38



### Modeling of X-ray spectroscopies

#### Michael Odelius Department of Physics



**4FUTURE Intensive course 2019:** Methods for Image and Spectral Data Analysis and Interpretation



Slide 2 of 38

### Outline

**Spectrum simulations – Part I** 

**Molecular orbital approach** 

**Spectrum simulations – Part II** 

**Electronic states approach** 

**Dynamical effects** 

**Excited state X-ray spectra** 



### Outline



Multi-configurational electronic  $\Psi$ 

Symmetry breaking Solvation

I 4d XPS Relativistic effects

Hydrogen bonding in liquid water

**O 1s RIXS** Dynamics in RIXS

Excited state proton transfer in 2-thiopyridone(aq)

N 1s XAS(t) Excited state XAS

Slide 4 of 38

## Quantum Chemistry $\mathcal{H}\Psi = E\Psi$

#### Hartree-Fock

Born-Oppenheimer
Mean-field approx.

 $\Psi_{\mathsf{HF}} = \mathsf{det} \mid \phi_1, \phi_2, \dots \phi_{\mathsf{N}} \mid$ 

Momentary e<sup>-</sup> - e<sup>-</sup> correlation missing!



**Singlet determinant** 

Correlation in  $\mathscr{H}$ 

#### Post-HF Multi-determinant

#### Wave function correlated

| <br>         | <b></b>    |            | $\rightarrow$ |
|--------------|------------|------------|---------------|
| <br><b>—</b> |            | <b>—</b>   |               |
| <br><b>_</b> | <b>_</b>   | <b>▲</b> ↓ | <b>+</b>      |
| <br>         |            | <b>_</b>   | <b>_</b>      |
| <br>         | <b>▲</b> ↓ | <b>▲</b> ↓ |               |

**Ab initio Molecular dynamics** 

F=ma

$$\boldsymbol{F}_{I} = -\nabla_{I} \langle \boldsymbol{H}_{e} \rangle \approx - \langle \boldsymbol{\Psi}_{0} | \nabla_{I} \boldsymbol{H}_{e} | \boldsymbol{\Psi}_{0} \rangle$$

### Quantum dynamics

$$i\hbar\frac{\partial}{\partial t}\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t) = H\Phi(\{\boldsymbol{r}_i\},\{\boldsymbol{R}_I\};t)$$



Slide 5 of 38

### The Quantum chemistry Nightmare $\mathscr{H}\Psi = E\Psi$



#### **Dynamical correlation**











Slide 6 of 38

### The Quantum chemistry Nightmare $\mathscr{H}\Psi = E\Psi$





#### **Dynamical correlation**







FULLCI **FULLCC** FULLC



HF → CIS.....CISD..... CCS.....CCSD.....  $HF \rightarrow$ CASSCF....RASSCF...  $HF \rightarrow$  $HF \rightarrow$ MP2....MP3.....MP4.... **MP**∞ CASSCF → CASPT2, MRCI,.....MRCC **RASSCF** → **RASPT2 RAS-MRCI** 

#### The many-body $\Psi$ in Hartree-Fock (and Kohn-Sham DFT)



Spin orbitals:  $\psi_{\iota} = \phi_{\iota}(1)\sigma_{\iota}(1)$ 

#### Slater determinant:

 $\Psi_{\text{HF or DFT}}(1,2) = \sqrt{\frac{1}{2}} \left[ \phi_1(1)\alpha(1)\phi_1(2)\beta(2) \right]$ =  $\sqrt{\frac{1}{2}} \left[ \phi_1(1)\alpha(1)\phi_1(2)\beta(2) - \phi_1(1)\beta(1)\phi_1(2)\alpha(2) \right]$ 

 $\Psi_{\text{HF or DFT}} = \sqrt{1/n!} |\psi_1 \psi_2 \dots \psi_n|$ 





#### **Electronic states - single/multi-configurational wavefunctions**

Closed shell states  $\Psi_{\text{Singlet}} = \sqrt{\frac{1}{2}} |\phi_a(1)\alpha(1)\phi_a(2)\beta(2)|$ 

#### **Open-shell states**

$$\Psi_{\text{Doublet}} = |\phi_{a}(1)\alpha(1)|$$
  
$$\Psi_{\text{Triplet}} = \sqrt{\frac{1}{2}} |\phi_{a}(1)\alpha(1)\phi_{b}(2)\alpha(2)|$$

#### may require multi-configurational wave functions!

 $\Psi_{\text{Open-shell singlet}} = \frac{1}{2} \left| \phi_a(1)\alpha(1)\phi_b(2)\beta(2) \right| - \frac{1}{2} \left| \phi_a(1)\beta(1)\phi_b(2)\alpha(2) \right|$ 



#### **Multi-configurational Quantum Chemistry**

#### Variational degrees of freedom in the wavefunction



### Multi-configurational quantum chemistry



K- L- M- N-edge core-level spectra

#### Slide 11 of 38

#### Modelling X-ray absorption spectroscopy



Modelling time-resolved X-ray absorption spectroscopy



Modelling Resonant Inelastic X-ray Scattering (RIXS)



Slide 14 of 38

#### Modelling time-resolved RIXS



Slide 15 of 38

### I 4d XPS of solvated I<sub>3</sub><sup>-</sup>

### **Experiment**



 $E_{binding} = E_{photon} - E_{kin}$ 

I. Josefsson, et al.. PCCP, 15, 20189 (2013)

# Hydration and fluctuations in I<sub>3</sub>-(aq)

### **Ab initio Molecular Dynamics**



### I-I bond asymmetry



#### **Charge localization**



I. Josefsson, et al.. PCCP, 15, 20189 (2013)

Slide 17 of 38

## **Photo-emission of I**



Slide 18 of 38

**Electronic structure of I**<sub>3</sub><sup>-</sup>(aq)

### Core-level photo-electron spectroscopy







### **Experiment**



I. Josefsson et al. PCCP, 15, 20189 (2013)

#### Slide 19 of 38

#### Vibrationally resolved RIXS of liquid water



#### Slide 20 of 38

### X-ray emission and RIXS of gas phase water



Slide 21 of 38

### **Molecular Orbitals → Electronic States**

RIXS  $H_2O(g)$ 





#### **RASPT2** calculations of RIXS spectra



#### Eloss=Excitation energy – Emission energy

#### Quasi-elastic RIXS of gas phase water

#### Multi-configurational electronic wavefunctions and multi-dimensional nuclear quantum dynamics.







### Selective gating to vibrational modes through resonant X-ray scattering DOI: 10.1038/ncomms14165

Rafael C. Couto<sup>1,2</sup>, Vinícius V. Cruz<sup>1</sup>, Emelie Ertan<sup>3</sup>, Sebastian Eckert<sup>4,5</sup>, Mattis Fondell<sup>5</sup>, Marcus Dantz<sup>6</sup>, Brian Kennedy<sup>5</sup>, Thorsten Schmitt<sup>6</sup>, Annette Pietzsch<sup>5</sup>, Freddy F. Guimarães<sup>2</sup>, Hans Ågren<sup>1</sup>, Faris Gel'mukhanov<sup>1,7</sup>, Michael Odelius<sup>3</sup>, Victor Kimberg<sup>1,7</sup> & Alexander Föhlisch<sup>4,5</sup>

#### **Electronically inelastic RIXS of gas phase water**



Weinhardt et al. J.Chem.Phys.136 144311 (2012)



#### Slide 25 of 38

0.75 eV

0.5 eV

0.25 eV

0.0 eV

-0.25 eV

-0.5 eV

-0.75 eV

-1.0 eV

529

#### **Electronically inelastic RIXS of gas phase water**



![](_page_24_Picture_3.jpeg)

#### Ultrafast dissociation features in RIXS spectra of the water molecule

Cite this: Phys. Chem. Chem. Phys., 2018.20.14384

Emelie Ertan, <sup>(1)</sup> \*<sup>a</sup> Viktoriia Savchenko, <sup>bc</sup> Nina Ignatova, <sup>bc</sup> Vinicius Vaz da Cruz, <sup>b</sup> Rafael C. Couto, <sup>b</sup> Sebastian Eckert, <sup>(1)</sup> <sup>d</sup> Mattis Fondell, <sup>e</sup> Marcus Dantz, <sup>f</sup> Brian Kennedy,<sup>e</sup> Thorsten Schmitt,<sup>f</sup> Annette Pietzsch,<sup>e</sup> Alexander Föhlisch,<sup>de</sup> Faris Gel'mukhanov, bc Michael Odelius \*\* and Victor Kimberg \*\*

#### **Quasi-elastic RIXS of liquid water**

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_3.jpeg)

Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering

Vinícius Vaz da Cruz <sup>™</sup>, Faris Gel'mukhanov, Sebastian Eckert, Marcella Iannuzzi, Emelie Ertan, Annette Pietzsch, Rafael C. Couto, Johannes Niskanen, Mattis Fondell, Marcus Dantz, Thorsten Schmitt, Xingye Lu, Daniel McNally, Raphael M. Jay, Victor Kimberg, Alexander Föhlisch & Michael Odelius <sup>™</sup>

#### **Quasi-elastic RIXS of liquid water**

**CPMD of liquid water** (64 H<sub>2</sub>O in PBC)

Scan potential along OH<sub>1</sub> and OH<sub>2</sub> distances for each water molecule (Unrestricted Kohn-Sham BLYP)

**Perform 2D quantum dynamics simulation of the RIXS process** 

Sum RIXS from different environments

![](_page_26_Figure_6.jpeg)

#### Slide 28 of 38

### **Quasi-elastic RIXS of liquid water**

![](_page_27_Figure_2.jpeg)

#### Slide 29 of 38

#### IR spectroscopy versus Quasi-elastic RIXS

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

Slide 30 of 38

#### **Excited state proton transfer in 2-thiopyridone(aq)**

![](_page_29_Figure_2.jpeg)

#### Slide 31 of 38

#### **Excited state proton transfer in 2-thiopyridone(aq)**

![](_page_30_Figure_2.jpeg)

2-TP(S<sub>n=1.2</sub>) 2-MP(S<sub>n=1,2</sub>) 2-TP(T<sub>1</sub>) 2-MP(T<sub>1</sub>) 2-TP<sup>-</sup>(S<sub>0</sub>)

![](_page_30_Figure_4.jpeg)

Vib. Res.Raman(t) Rui Du et al., J. Phys. Chem. B, **115**, 8266 (2011) (10.1021/jp203185a)

**S1s XAS(t)** Benjamin E. Van Kuiken, Matthew R. Ross, Matthew L. Strader, Amy A. Cordones, Hana Cho, Jae Hyuk Lee, Robert W. Schoenlein and Munira Khalil, Struct. Dyn. **4**, 044021 (2017) (10.1063/1.4983157)

N1s RIXS(t) Sebastian Eckert et al., Angewandte Chemie, 56, 6088 (2017) (10.1002/anie.201700239)

#### **Excited state proton transfer in 2-thiopyridone(aq)**

![](_page_31_Figure_2.jpeg)

#### Slide 33 of 38

#### Low energy electronic transitions in 2-thiopyridone(aq)

![](_page_32_Figure_2.jpeg)

#### **Excited state proton transfer in 2-thiopyridone(aq)**

#### Total energy calculations RASPT2+PCM (eV)

| $\mathrm{State}^{\dagger}$ | $2\text{-}\mathrm{TP}_{\mathrm{FC}}$ | $2\text{-}\mathrm{TP}_{\mathrm{R}}$ | $2\text{-}MP_R$ | $2\text{-}\mathrm{TP}_{\mathrm{R}}^{-}$ |
|----------------------------|--------------------------------------|-------------------------------------|-----------------|-----------------------------------------|
| $\mathrm{S}_{\mathrm{0}}$  | 0.00                                 | 0.00                                | 0.58            | $0.00^{\ \ddagger}$                     |
| $S_1(n,\pi^*)$             | 3.87                                 | 2.94                                | 5.38            | $3.50^{+}$                              |
| $\mathrm{S}_2(\pi,\pi^*)$  | 3.89                                 | 3.15                                | 5.12            | 3.46 <sup>‡</sup>                       |
| $T_1(\pi,\pi^*)$           | 3.16                                 | 2.66                                | 4.42            | 3.20 <sup>‡</sup>                       |
| $\mathrm{T}_2(n,\pi^*)$    | 3.60                                 | 2.95                                | 4.85            | $3.40^{\ \ddagger}$                     |
| $\mathrm{S}_3(n,\pi^*)$    | 5.08                                 | -                                   | -               | -                                       |
| $\mathrm{S}_4(\pi,\pi^*)$  | 5.13                                 | -                                   | -               | -                                       |

**FC=Vertical excitation energy** 

R=Adiabatic energy

#### Slide 35 of 38

### Excited state proton transfer in 2-thiopyridone(aq)

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

Slide 36 of 38

#### Excited state proton transfer in 2-thiopyridone(aq)

![](_page_35_Figure_2.jpeg)

#### Slide 37 of 38

#### **Excited state proton transfer in 2-thiopyridone(aq)**

![](_page_36_Figure_2.jpeg)

#### S1s XAS simulations RASPT2+PCM

![](_page_36_Figure_4.jpeg)

#### **Summary**

### **Molecular orbital approach**

Modeling and assignment of XPS, XAS, XES, RIXS

### **Electronic states approach**

State specific electron relaxation

High-resolution spectral features

Relativistic and dynamical effects

Excited state X-ray spectra

![](_page_37_Picture_9.jpeg)

![](_page_37_Picture_10.jpeg)