Electronic and molecular structures of organic dye/TiO₂ interfaces for solar cell applications: a core level photoelectron spectroscopy study

Maria Hahlin, Erik M. J. Johansson, Stefan Plogmaker, Michael Odelius, Daniel P. Hagberg, Licheng Sun, Hans Siegbahn and Håkan Rensmo*

Received 8th July 2009, Accepted 17th November 2009
First published as an Advance Article on the web 6th January 2009
DOI: 10.1039/b913548k

The electronic and molecular properties of three organic dye molecules with the general structure donor–linker–anchor have been investigated using core level photoelectron spectroscopy (PES). The molecules contain a diphenylaniline donor unit, a thiophene linker unit, and cyanoacrylic acid or rhodanine-3-acetic acid anchor units. They have been investigated both in the form of a multilayer and adsorbed onto nanoporous TiO₂ and the experimental results were also compared with DFT calculations. The changes at the dye-sensitized TiO₂ surface due to the modification of either the donor unit or the anchor unit was investigated and the results showed important differences in coverage as well as in electronic and molecular surface properties. By measuring the core level binding energies, the sub-molecular properties were characterized and the result showed that the adsorption to the TiO₂ influences the energy levels of the sub-molecular units differently.

1. Introduction

Dye-sensitized solar cells (DSC) have received widespread interest as a new promising alternative to conventional solar cells. A typical DSC is constructed from three main components: a nanoporous network of electron conducting material, a monolayer of light absorbing dye molecules adsorbed to the surface of the electron conducting material, and a hole conducting material in contact with the dye molecules. The efficiency of the solar cell is largely dependent on the molecular properties of the interfacial region between the materials. Therefore, information about the interfaces is of great importance in understanding and optimizing the photo conversion function.

In the most efficient DSCs, reaching over 11% efficiency, metal complexes, such as ruthenium polypyridines, are adsorbed on a nanostructured TiO₂ network and used as a light harvesting material. In such devices, the dye-sensitized nanostructured TiO₂ surface is in contact with a liquid based electrolyte containing the redox couple I⁻/I₃⁻. In recent years, however, there has been an increasing interest in organic dyes as light harvesting materials. Specifically, the organic sensitizers compete with the more traditional inorganic dyes in the solid-state dye-sensitized solar cell configuration. This is because these systems currently benefit from high extinction coefficients of the dyes for efficient light harvesting, which is an advantage in solid-state devices due to limitations in charge transport.

In the present study, three organic dyes, D5L2A3, D5L2A1, and D9L2A1, are investigated. The molecules are each built up by three parts, an electron donor unit, a linker unit, and an anchor unit, see Fig. 1, and they have been used as dye molecules in DSC. Upon absorption of a photon in such solar cell configurations, an electron is excited from the HOMO to the LUMO, which in turn injects an electron into the TiO₂ network. In a general donor–bridge–acceptor model used for similar compounds, the HOMO is located on the donor part of the molecule and the LUMO is located on the acceptor part of the molecule. In the donor–linker–anchor formalism used for the molecules in this investigation, calculations indicate that the HOMO is located mostly around the donor part with only

![Fig. 1 Molecular structure of (going from top down) D9L2A1, D5L2A1 and D5L2A3. The molecules are build up by three units, the donor unit (diphenylamine moiety), the linker unit (thiophene moiety) and the anchor unit (cyanoacrylic moiety for D5L2A1 and D9L2A1 and rhodanine moiety for D5L2A3).](image-url)
a small contribution at the linker and anchor groups, while the LUMO is located largely around the anchor part with important contributions from the linker unit and only minor contributions from the donor part.9,10 These molecules have previously been investigated using a range of techniques.3,4,9–12

Photocurrent microscopy (PCM) is a technique that can be used to gain atom specific information on the electronic structure and molecular surface structure.4,13,14 The probing depth in a PCM experiment is only a few nm into the material, and thus this technique is very sensitive to the interface region between the materials used, which is important when investigating a monolayer of dye on a surface. The focus of this investigation is to use core level photocurrent microscopy (PCM) in combination with theoretical calculations to study the effect of the dye sensitized surface composition of these interfaces as the donor/anchor units are exchanged (D5L2A1 to D9L2A1 or D5L2A1 to D5L2A3). The investigation also focuses on studying the effect of the adsorption to the TiO\textsubscript{2} surface on the energetic core levels of the dye molecules using core level PES.

2. Experimental

2.1 Sample preparation

The synthesis procedures of the 3-{5-[4-(diphenylamino)styryl][thiophen-2-yl]-2-cyanoacrylic acid (D5L2A1), 3-{5-[5-bis[4-(methoxyphenylamino)styryl][thiophen-2-yl]-2-cyanoacrylic acid (D5L2A2), and 3-{5-[4-(diphenylamino)styryl][thiophen-2-yl]-2-rhodamine-3-acetic acid (D5L2A3) dyes, as well as the preparation of the TiO\textsubscript{2} colloidal solution are described elsewhere.3,9,12 Preparations of the nanocrystallized dye-sensitized electrodes were done according to the following procedure. The colloidal TiO\textsubscript{2} solution was firstly diluted with ethanol (1:1) in order to produce a thin nanocrystallized TiO\textsubscript{2} film. The TiO\textsubscript{2} solution was thereafter spread out onto conducting F:SnO\textsubscript{2} glass pieces. The electrodes were heated to 450°C for 30 min. This produced a 1–2 μm thick nanoporous TiO\textsubscript{2} film. The electrodes were thereafter immersed into the dye solutions optimized for solar cell performance (1 mM D5L2A1 dissolved in acetonitrile, 1 mM D9L2A1 dissolved in acetonitrile and 0.5 mM D5L2A3 dissolved in acetonitrile) for 12 h. Finally, the samples were rinsed with acetonitrile before being dried in air and put in the PES analyzing chamber at the synchrotron radiation laboratory within ten minutes.

The in-house PES measurements using Al K\textsubscript{α} radiation were performed on the same samples prepared for the synchrotron radiation based PES measurements in MAX-lab, Lund. The samples were stored in a dark environment in air during the transport between the measurement stations.

The formation of a complete and conducting multilayer (ML) of dye molecules is complex. We successfully prepared a D5L2A1 multilayered sample by dropping the 1 mM D5L2A1 solution onto a silicon wafer and thereafter letting the solvent evaporate. A D9L2A1 multilayered sample was prepared by dropping the 1 mM D9L2A1 solution onto a F:SnO\textsubscript{2} substrate and letting the solvent evaporate. So far, we have not been able to produce a multilayer of the D5L2A3 molecule from solution. Instead, a D5L2A3 multilayer sample was prepared by smearing out the dye powder onto a SnO\textsubscript{2}:F surface. The thickness of a powder layer is such that the conductivity in the sample is reduced and thus the peak resolution in these samples benefit from measurement using lower photon flux, as produced in the in-house ESCA 300 spectrometer. In Table 3, all multilayer samples were prepared by smearing out the dye powders. The formation of a complete multilayer, with negligible spectroscopic contribution from the substrate, was determined by following characteristic substrate elements (i.e. Si and Sn).

2.2 Measurements

The photoelectron spectroscopy (PES) measurements were performed using synchrotron radiation at BL 1411 at the Swedish national laboratory MAX-lab in Lund. The electron take off angle was 70° and the electron take off direction was collinear with the e-vector of the incident photon beam. The kinetic energies of the photoelectrons were measured using a Scienta R4000 WAL analyzer. The PES spectra of the dye-sensitized samples were energy calibrated by setting the Ti2p substrate signal to 458.56 eV.14 The multilayered spectra were energy calibrated by aligning the S2p\textsubscript{L} peak, i.e. the sulfur peak originating from the thiophene linker unit, of the multilayered spectra against the S2p\textsubscript{L} peak from the dye sensitized samples, respectively. Therefore, when comparing the binding energies of the dye-sensitized sample to the multilayer, only differences in binding energies can be discussed.

Charging and radiation effects during measurements were monitored continuously and are negligible for all spectra reported in the present investigation.

In a PES experiment, the mean free path of the electrons depend on their kinetic energy. Thus, when working at a synchrotron radiation facility, the surface sensitivity in a measurement can be controlled by variation of the photon energy. Measurements (of a specific peak) using lower photon energies are more surface-sensitive than those performed using higher photon energies.

Quantitative characterization comparing amounts of the different elements at the surface were performed with an in-house ESCA 300 spectrometer, using monochromated Al K\textsubscript{α} radiation (1486.7 eV). The instrument is calibrated for cross section and analyzer transmission. The electron take off angle was 90°.

3. Theory

Electronic structure calculations on the single free molecules were used to model the experimental spectra for multilayer and monolayer adsorption of D5L2A1, D9L2A1, and D5L2A3 on the TiO\textsubscript{2} surface. There is at present too little information on the structures in adsorption to use extended models, but in future work we aim at using constraints from a combination of different experimental probes to evaluate adsorption models and the effect on the electronic structure. Density functional calculations including geometry optimizations and core-level photo emission spectrum simulations were performed using the StoBe-deMon code15 on the level of gradient-corrected exchange and correlation functionals.16 All atoms were described with double-zeta valence basis sets including polarization.
functions, except for the calculation of the core-level binding energy for N1s, O1s and S2p. The core-level binding energies were determined from explicit Kohn–Sham calculations of the initial (ground state) and final (core-ionized) electronic states in the photoemission process. A converged value of the electronic relaxation in the presence of the core-hole was obtained by using a flexible IGLO basis set on the core-ionized atom. In order to localize the core-hole to individual atoms, other atoms of the same element were described by effective core potentials. Hence, after optimizing each molecule, separate calculations to determine the core-level binding energy were performed for every nitrogen, oxygen and sulfur atom in the system.

The calculated core-level binding energies are used in the assignment of the experimental core-level PES spectra. Since only the isolated molecules are used to model the adsorbents, the comparison of the absolute energies is not meaningful. Moreover, the core-level binding energies derived from Kohn–Sham calculations are strongly dependent on the choice of density functional. However, the relative energies are representative of the isolated molecule and can be employed to analyze the chemical shift in the adsorbent structures. When comparing the relative binding energies (Table 4), the theoretical values are energy calibrated in the same way as the multi-layered core level binding energies, i.e. against the S2pL level.

4. Results and discussion

Sub-molecular experimental information about electronic and molecular structures at molecular interfaces can be obtained from core-level measurements since these levels are not directly involved in chemical bonding and thus are atom specific. Each element has its own characteristic core-level pattern, but the detailed energy positions depend on charge redistributions linked to the chemical environment of the specific atom, so called chemical shifts.

The assignment of the observed peaks is generally done by the comparison with model compounds or from quantum chemical calculations. The dye molecules investigated here are built up according to the donor–linker–anchor scheme, where the diphenylaniline moiety is referred to as the donor unit, the thiophene unit is referred to as the linker unit and the cyanoacrylic acid and the rhodanine-3-acetic acid units are referred to as the anchor units. Each unit contains atoms in specific chemical states that can be resolved in the core level spectra, acting as indicators for charge redistribution in that unit, see Fig. 1. Specifically, in the donor unit, there is a nitrogen level, N1sAn, in the linker unit there is a sulfur level, S2pL, and in the anchor unit, there is a nitrogen level, N1sAn. The different anchor unit of D5L2A3 also contains a characteristic sulfur level, S2pAn. The general peak assignments will be discussed in the initial part of the discussion below.

The peak intensities depend on the density of the element in the specific state and are often used to estimate concentrations. However, in an organized molecular layer, differences in attenuation over the molecular layer due to scattering is also important. Variation in intensity can therefore be used to probe the surface molecular structure and this is the focus of the second part of the discussion.

Finally, the changes in core-level binding energies of the atoms in the different units (donor, linker, and anchor) when comparing different molecules and different molecular layers, as well as theoretical and experimental calculations, will allow us to follow electronic changes linked to that sub-molecular unit. This is the aim in the last part of the discussion.

4.1 Peak assignments

In Table 1, the calculated energies of the N1s, O1s, and S2p core-levels in D5L2A1, D9L2A1, and D5L2A3 are presented. In D5L2A1 and D9L2A1, the two N1s core levels are well separated, located approximately 1.8 eV apart with the N1sD level at higher binding energies compared to the N1sAn core level. In D5L2A3, the two nitrogen peaks are closer together compared to the other two molecules. For D5L2A1 the N1s peaks are located 0.65 eV apart and here with the N1sAn at higher binding energies compared to the N1sD core level. The calculated S2pL core level is located around a binding energy of 169 eV for all molecules. For D5L2A3, the single bonded S2pAn is also located around a binding energy of 169 eV, only 0.1 eV apart from the S2pL energy level, whereas the double bonded S2pAn core level is well separated from the other two S2p levels by approximately 2 eV. The O1sOH and the O1sSC–O core levels are located approximately 2.6 eV apart with the O1sOH core level at higher binding energies. For D9L2A1, the O1sD energy level is located at approximately the same binding energy as the O1sOH core level, and for the D5L2A3, the O1sAn is located at a binding energy of approximately 1.3 eV lower than the O1sSC–O core level.

Table 1	Single molecule calculated core level binding energies with respect to the vacuum level. The calculated ΔEB is the binding energy difference between a specific core level binding energy of the D9L2A1 and D5L2A3, respectively, relative the same core level binding energy in D5L2A1			
N1sAn	405.27	402.85	402.67	−0.18
N1sD	404.62	404.69	404.47	−0.17
S2pL	169.17	169.06	168.87	0.19
S2pAn (single)	169.07	—	—	—
S2pAn (double)	166.97	—	—	—
O1sC–O (COOH)	536.68	535.57	535.41	0.16
O1sOH	539.17	538.19	538.04	0.15
O1sD	—	—	537.97	—
O1sAn	553.39	—	—	—

There is a small difference in binding energy for the two methoxy oxygens.

This journal is © the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 1507–1517 | 1509
The experimentally measured N1s, O1s, and S2p spectra of D5L2A3, D9L2A1, and D5L2A1 adsorbed on TiO2 are displayed in Fig. 2–4 together with the multilayer spectra. For the D5L2A1 and D9L2A1 spectra in Fig. 2, the peak at the higher binding energy is assigned to the nitrogen atom in the donor unit and the peak at the lower binding energy is assigned to the nitrogen atom in the anchor unit, which are in accordance with previous assignments and are also in reasonable agreement with the calculation, see Table 1. These two nitrogen peaks are hereafter referred to as N1sD and N1sAn, respectively. For the D5L2A3 spectra, the peak at higher binding energy is assigned to the nitrogen atom in the anchor unit and the peak at lower binding energy is assigned to the nitrogen atom in the donor unit, where the position of the N1sD of D5L2A3 is rather close to that of D5L2A1. The two nitrogen peaks for D5L2A3 are hereafter referred to as N1sAn and N1sD, respectively. The assignment of peaks in the D5L2A3 nitrogen spectrum is also in reasonable agreement with the theoretical calculation, see Table 2.

The O1s spectra are displayed in Fig. 3. In the dye-sensitized spectra, the substrate oxygen peak is observed at a lower binding energy. The peaks in the O1s spectra located at higher binding energies originate from surface adsorbed species, such as the two oxygen atoms in the carboxylic moiety. Detailed analysis of the O1s spectra originating from the carboxylic groups is difficult since the ex situ preparations also implies contributions from a small amount of contaminations such as water and organic molecules. However, a peak at high binding energy, which originates from the oxygen atoms in the methoxy groups, is clearly distinguishable in D9L2A1 when compared to the D5L2A1 and D5L2A3 samples. This peak is hereafter referred to as O1sD.

The S2p spectra of D5L2A3, D5L2A1, and D9L2A1 are shown in Fig. 4. A S2p spectrum can be de-convoluted with a spin–orbit split doublet for each chemical state, i.e. one doublet, S2p3/2 and S2p1/2, with intensity ratio 1:2 and peak split of 1.18 eV. In the S2p spectra of the multilayered sample, only one doublet is present for D5L2A1 and D9L2A1, and this doublet is assigned to the sulfur atom in the linker unit, and is hereafter referred to as S2pL. For the dye sensitized D5L2A1 and D9L2A1 cases, two doublets are needed to de-convolute the sulfur spectrum. These are both assigned to the sulfur in the linker unit and the largest doublet is referred to as S2pL and the smaller doublet is referred to as the extra S2p, the origin of which will be discussed below. The D5L2A3 molecule contains three chemically inequivalent sulfur atoms, and thus the S2p spectrum of D5L2A3 is expected to be more complex. Here, two different doublets can be resolved. The largest doublet is assigned to the linker unit as well as the ring sulfur in the anchor unit. The small energy difference makes a de-convolution between these sulfur atoms difficult. The smaller doublet is assigned to the double bonded sulfur in the anchor unit. This peak is hereafter referred to as S2pAn. Details of all spectra will be discussed further below.

4.2 Peak intensities: surface molecular structure

4.2.1 Surface coverage. Basic information on the dye coverage is obtained by comparing a nanostructured surface modified with D5L2A1 and an unmodified nanostructured TiO2 substrate. The unmodified TiO2 mainly shows strong...
Ti2p and O1s substrate signals. It also contains small amounts of surface adsorbed oxygen and carbon containing contaminants as expected for a sample not cleaned by *in situ* methods. However, for the sample surface modified with D5L2A1, the

Fig. 3 The O1s spectra of D5L2A3, D5L2A1 and D9L2A1, measured using photon energy 640 eV and 758 eV, along with the O1s spectra of multilayer D5L2A1 and D9L2A1, measured with photon energy 758 eV, and multilayer of D5L2A3 measured with photon energy 1487 eV.

Fig. 4 The S2p spectra for the D5L2A3, D5L2A1 and D9L2A1 dye sensitized TiO2 electrode, measured using photon energy 454 eV and 758 eV, along with the S2p spectra of a multilayered sample of D5L2A1 and D9L2A1 measured using photon energy 454 eV, and the S2p spectrum of the D5L2A3 sample measured using photon energy 1487 eV.
C1s and O1s molecular signals are substantially higher and the substrate signal is damped. According to the molecular structure, the relative number of S versus C is 1:28 and the experimentally observed value of 1:31, see Table 2, therefore shows that the amount of contaminants on the TiO2 surface is small relative to the amount of dye molecules. The damping in the substrate signal (Ti2p) can be used to estimate the thickness of the dye molecular layer assuming that the modified and the unmodified samples contain only small amounts of contaminants. Based on the observed damping of 40%, together with a mean free path of 20 Å for electrons with a kinetic energy of 1000 eV,31 and using the take off angle 90°, the mean thickness of the D5L2A1 molecular layer was estimated to be 11 Å. Since the length of the molecule is about 18 Å, the experimental results are in agreement with a rather close packed molecular layer pointing out from the surface.

Differences in the amount of surface adsorbed D5L2A1, D9L2A1, and D5L2A3 molecules can be determined rather accurately by measuring the photoemission intensity from a spectroscopically well-defined core level, such as S2p or N1s, in the two molecules, relative to a substrate signal. This procedure is most accurate for samples measured with high photon energy and for which the binding distance of the atoms in the molecule with respect to the substrate is short compared to the electron mean free path and when the molecular structure is similar. The obtained surface percentage (often referred to as atom percentages) of Ti, S, N, O and C are shown in Table 2 and can be used to make such comparisons. The intensity of the total N1s signal versus the Ti2p substrate signal is 20% lower for D9L2A1 compared to D5L2A1, while for D5L2A3 compared to D5L2A1, it is 2% lower. Using the intensity of the S2p peak versus the Ti2p peak, the ratio is 24% lower for D9L2A1 compared to D5L2A1 and 10% lower for D5L2A3 compared to D5L2A1. These ratios show that the surface coverage of D5L2A1 is higher than the surface coverage of D9L2A1 and also that the surface coverage of D5L2A1 is more similar to the surface coverage of D5L2A3.

A different probe of the coverage can be obtained from the intensity of a spectroscopically well-defined atom for the two molecules acquired under the same experimental conditions, that is, with the same time for acquisition, X-ray intensity and sample configuration. Following this procedure for the nitrogen in the donor unit, a spectroscopic signal is expected to show small and similar attenuation effects for the different molecules. We determine the intensity of N1s for D9L2A1 and D5L2A3 to be 79% and 93% in comparison with the D5L2A1 sensitized film.

In summary, the methods used to determine the amount of dye adsorbed indicate that the intensity of the D5L2A1 and D5L2A3 molecular signals are close to values expected from a molecular layer with an estimated thickness slightly lower than that expected from a stretched out molecule. However, the D9L2A1 molecule forms a somewhat less dense molecular layer at the TiO2 surface. The effect of the addition of the more bulky methoxy groups is therefore to lower dye coverage by approximately 20%, while changing the anchor unit from cyanoacrylic acid to rhodanine-3-acetic acid has only a small effect on the dye coverage. Turning to the functional properties in working solar cell devices, D9L2A1 and the D5L2A1 show rather similar current conversion efficiencies. Therefore together these results indicate that the differences in coverage observed here have a minor effect on the contribution to charge generation from the individual molecule.9 On the contrary, the current conversion efficiency of solar cells based on D5L2A3 are lower, although the coverages found here are similar. Again, this indicates that differences in dye load cannot explain the observed lowering in efficiency.12

4.2.2 General surface molecular structure. Further information on the surface molecular structure can be obtained by comparing the intensities of different atoms in the molecular layer. Such comparisons are given in Table 2 for sensitized surfaces and Table 3 for multilayer measurements performed at 1487 eV photon energy. In this table, the intensities have been corrected for differences in cross-section and spectrometer transmission. Often, such values are referred to as atomic percentages. However, for organized surface layers, differences in position of the atom in the molecular layer affect the attenuation, due to scattering and thereby the measured intensity. Below, we focus on describing the intensity changes for the different core levels and leave the detailed discussion of the peak position to the section on electronic structure.

Firstly, we note that when comparing the relative intensities for the different atoms in the N1s spectra of the surface adsorbed molecules at photon energies of 540 eV and 758 eV, the most striking observation is the minor contribution from the N1sa intensity compared to the N1sp intensity, see Fig. 2. This effect is attributed to a relative increase in scattering and, as reported previously for D5L2A1,4 the results therefore support a molecular surface configuration in which the dye molecules are bonded to the surface with the anchoring unit close to the TiO2 substrate and the donor unit pointing out from the surface. In general, all three molecules show the same effect, although the magnitudes differ.

It is further interesting to note that a significant deviation from the stoichiometric ratio between the nitrogen signals also prevails for the multilayer spectra. This indicates that a similar

Table 2 The relative atomic percentage of Ti, S, N, O and C in the dye sensitized D5L2A3, D9L2A1 and D5L2A1 samples. The numbers are based upon a uniform distribution of elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>D5L2A1 (%)</th>
<th>D9L2A1 (%)</th>
<th>D5L2A3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>10.8</td>
<td>10.2</td>
<td>10.1</td>
</tr>
<tr>
<td>S</td>
<td>1.8</td>
<td>1.3</td>
<td>3.9</td>
</tr>
<tr>
<td>N</td>
<td>2.5</td>
<td>1.9</td>
<td>2.3</td>
</tr>
<tr>
<td>O</td>
<td>28.5</td>
<td>33.3</td>
<td>28</td>
</tr>
<tr>
<td>C</td>
<td>56.4</td>
<td>53.2</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 3 The relative atomic percentage of S, N, O and C in multilayer samples of D5L2A3, D9L2A1 and D5L2A1. The results are with respect to a uniform distribution of elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>D5L2A1 (%)</th>
<th>D9L2A1 (%)</th>
<th>D5L2A3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3.6</td>
<td>3.3</td>
<td>7.3</td>
</tr>
<tr>
<td>N</td>
<td>4.5</td>
<td>4.7</td>
<td>4.0</td>
</tr>
<tr>
<td>O</td>
<td>7.6</td>
<td>11.4</td>
<td>7.6</td>
</tr>
<tr>
<td>C</td>
<td>84.3</td>
<td>80.7</td>
<td>81.2</td>
</tr>
</tbody>
</table>
preferential molecular orientation is also present for the surfaces of the multilayer samples.

A more detailed picture of the molecular surface structure can be obtained by analyzing relative peak intensities at different photon energies and thus different surface sensitivities. A comparison between the two N1s peaks reveals that the intensity of the N1s peak compared to the total N1s intensity is about 15% for D5L2A1, when measuring with photon energy 540 eV and about 20% when measuring with photon energy 758 eV. Assuming a mean free path of the electrons in the molecular layer of 6 Å at 540 eV and 8 Å at 758 eV, this difference is expected from a simple molecular layer model at a flat surface, in which the difference in distance from the surface for the two nitrogen atoms is on average about 9 Å. The increase of this ratio in the D9L2A1 molecule is from about 18% to 20% when changing the photon energies from 540 eV to 758 eV, which is consistent with a distance of about 9 Å between the nitrogen atoms, indicating that the D9L2A1 molecule has a similar angle towards the TiO2 surface as the D5L2A1. The increase in this ratio for the D5L2A3 molecule is from about 14% to 19%, which is consistent with a difference in distance between the nitrogen atoms of approximately 11 Å. The narrow binding energy distance between the nitrogen peaks in the spectrum of the D5L2A3 makes it difficult to de-convolute, and therefore the uncertainty is greater in the case of D5L2A3 than in the case of D5L2A1. Also, remembering that the distance between the nitrogen atoms in the D5L2A3 is greater than in the case of D5L2A1, we draw the conclusion that the orientation of the D5L2A3 molecule on the TiO2 surface is rather similar to that of D5L2A1. Although a quantitative analysis as discussed above contains errors due to e.g. the surface morphology, it clearly suggests an organized molecular geometry on the surface, with the donor unit pointing out from the TiO2 surface. At this point, it is important to note that these dyes were designed for the DSC system with the intention of positioning the molecule with a HOMO level away from the TiO2 surface, in order to reduce recombination in the DSC, and with the LUMO positioned close to the TiO2 surface, in order to favour electron injection. The general dye orientation found from the analysis above support such an orientation allowing for high conversion efficiencies.

The O1s spectra of D5L2A1, D9L2A1, and D5L2A3 on TiO2 are displayed in Fig. 3. The substrate oxygen peak can be observed at the lowest binding energy, and at higher binding energies, the surface adsorbed species are identified. The main observation is the substantial intensity of the O1speak peak (at the highest binding energy in the O1s spectrum) of the dye-sensitized D9L2A1 sample. This peak becomes larger in a surface sensitive mode compared to the intensity of the other oxygen peaks related to the molecule. The increase of the O1s peak, relative to other surface oxygen peaks, implies that this atom is further out towards the vacuum interface, thus supporting the results of the N1s spectra discussed above, where the binding configuration of the D9L2A1 molecule was found to have the donor unit furthest from the TiO2 surface.

In the oxygen spectra for the dye-sensitized D5L2A1 and D5L2A3 samples, we also observe contributions from the molecules. Although such features for an ex situ prepared sample is more difficult to interpret, we note the presence of a feature at 533.45 eV, which indicates a substantial amount of OH groups.

4.2.3 Mixed adsorption configuration. The S2p spectra of D9L2A1 and D5L2A1 are shown in Fig. 4. In the multilayer films, the peak can be de-convoluted into one spin–orbit split doublet corresponding to sulfur atoms in the same chemical environment, which is expected from the molecular formula. However, in the measurements of the surface adsorbed molecules, two spin–orbit split doublet are needed to account for the spectra, see Fig. 4. The intensity of the smaller doublet peak is approximately 11% of the total S2p signal in the case of D5L2A1, and 18% in the case of D9L2A1, both measured using photon energy 454 eV. The binding energy difference between the main S2p peak and this extra S2p peak is approximately 0.7 eV for both D5L2A1 and D9L2A1, which indicates that the sulfur atoms responsible for the extra S2p peak is clearly in a different chemical environment. The origin of this extra S2p peak is unclear but, as observed for the metalorganic dyes, this indicates a small mixing in adsorption configuration. It is interesting to note that in the multilayer samples for both D5L2A1 and D9L2A1, only one spin–orbit split doublet is needed to account for the spectrum. This clearly suggests that the formation of the extra state in the dye-sensitized samples is induced by the surface adsorption.

From the above observation, a different adsorption configuration in addition to the main binding configuration may be inferred where some (~11% and ~18%) for D5L2A1 and D9L2A1, respectively) molecules lie almost flat at the TiO2 surface planes or adsorb at lattice edges in order to allow for the sulfur atom to interact directly with the surface to produce such a large chemical shift, see Fig. 5.

The D5L2A3 molecule contains three sulfur atoms and a similar analysis is therefore more complex. The double bonded sulfur atom in the anchoring unit is clearly separated from the other two sulfur atoms, while the sulfur states originating from the linker unit and the anchor unit are very similar in binding energy and cannot be de-convoluted in the experimental spectra. The spectrum of the surface adsorbed D5L2A3 can be satisfactorily modelled using only two spin–orbit split doublets. However, a similar S2p mixture, as found in the S2p spectra of the dye sensitized D5L2A1 and D9L2A1 samples, cannot be excluded for the D5L2A3 sample.

In a molecular device, the effect from a mixed configuration, as schematically displayed in Fig. 5, may have consequences.

Fig. 5 Schematic picture of a simple model of the D9L2A3 molecular layer at the TiO2 surface. Two different S2p states (visible in Fig. 3) imply the possibility of a second adsorption configuration at the TiO2 surface. Excluding the signal from the molecules with the minority binding configuration results in only minor changes in the previously calculated distances between the nitrogen atoms.
on the molecular function. Specifically, the charge transfer dynamics will be affected and mixing may explain the observation of multi-exponential charge injection as well as allow specific charge recombination mechanisms.

4.3 Core-level binding energies: sub-molecular electronic changes and energy matching

4.3.1 Comparing theoretical calculations and dye multilayer. The theoretical PES core level values are based on single molecule calculations and should ideally be compared to PES measurements of molecules in the gas phase. So far, our attempts to evaporate the D5L2A1 molecule have unfortunately resulted in the decomposition of the molecule, leaving this option not possible. Instead, the relative theoretical core level energies values are compared here to the values of the multilayer sample in order to observe some specific intermolecular interactions.

Comparing the theoretical core level binding energy values between the different molecules first, information on how the substitutions of either the donor or the anchor unit affects the electronic structure of the dyes is gained. The theoretically calculated core level values are presented in Table 1. Comparing the calculated binding energy difference (\(\Delta E_b\)) between the core levels in D9L2A1 and D5L2A1, we find that these are generally lower for all levels of D9L2A1. This indicates that for the obtained configurations, all the orbitals of the molecule are affected by the exchange of the donor unit, although the magnitude differs.

The calculated binding energy shifts between the core levels in D5L2A3 and D5L2A1 show only small differences in the donor, \(-0.07\) eV (\(\Delta E_b(\text{N1s}_{\text{S} \text{TPA}})\)), and linker units, \(0.11\) eV (\(\Delta E_b(S2p)\)), while the changes in the carboxylic acid group is larger, \(1.11\) eV (\(\Delta E_b(\text{O1s}_{\text{CO}})\)) and \(0.98\) eV (\(\Delta E_b(\text{O1s}_{\text{SO}})\)). Thus the theoretical results indicate that the incorporation of the rhodanine unit mainly affects the orbitals of the carboxylic unit. The calculated difference in the carboxyl unit as the anchor unit is exchanged may have an affect on the coupling between D5L2A3 and TiO₂.

In Table 4, the relative binding energies of the donor units, represented by the N1s\(_D\) peaks, for the experimental multilayered samples and the theoretical calculations are found to be very similar for all three dyes, with the largest difference being below \(0.1\) eV. This shows that the theoretical calculations model the difference in binding energy between the donor unit and linker unit, i.e. the binding energy difference between the N1s\(_D\) and the S2p\(_L\) core levels, in the multilayer very well. Importantly, this also indicates that for a multilayer, the structures of the donor and linker unit resemble that of a non-interacting dye molecule, i.e. with little or no specific interaction with the surroundings.

On the other hand, the binding energies of the anchor units, the N1s\(_{\text{An}}\) peaks, for the multilayered samples are very different to the theoretical values for all three dyes, see Table 4, with the largest difference being almost \(1\) eV. The good agreement for the N1s\(_D\) and the S2p\(_L\) between the experimental and theoretical binding energies in contrast to the large difference found for the N1s\(_{\text{An}}\) core levels suggest a specific interaction, such as hydrogen bonding, between the anchor units of the dyes in the multilayer, as previously discussed by Kitamura et al. A less pronounced effect of the binding energy difference between the theoretical and experimental values for the anchor unit in the D5L2A3 molecule indicates that the effect of such specific intermolecular interactions is smaller than for D5L2A1 and D9L2A1.

Next, we compare the core levels of the D9L2A1 and the D5L2A3 molecules to that of the D5L2A1 molecule to follow electronic effects from substitutions in the donor and anchor units, respectively. In the multilayered sample, a minor increase of about \(0.06\) eV of the binding energy difference between the N1s\(_D\) and S2p\(_L\) energy levels is observed when the donor unit is modified (comparing D5L2A1 to D9L2A1). As discussed previously, the theoretical calculations show a negligible change in relative binding energy (\(-0.03\) eV). The minor difference observed between the N1s\(_D\) and the S2p\(_L\) core levels indicates that the electronic changes induced by the donor modification also couple with the linker unit due to electronic conjugation. In the experiments on the multilayered sample, as well as in the theoretical calculation, a minor decrease of about \(0.1\) eV of the binding energy difference between the N1s\(_D\) and S2p\(_L\) energy levels is observed when the anchor unit is exchanged.

4.3.2 Comparing the dye sensitized surfaces. In Table 4, the binding energies for the dye-sensitized surfaces are also presented, and we now analyze the effect that the substitution has on the energy levels of the molecules adsorbed on TiO₂. It may be noted that the S2p\(_L\) binding energy is very similar for all three dyes, differing at most by only \(0.07\) eV relative to Ti2p. This indicates that the energy levels of the linker unit of the adsorbate molecule are very similar relative to the Ti2p energy level in the substrate for all three dyes. Also, the binding energies of N1s\(_{\text{An}}\) for the D5L2A1 and D9L2A1 sensitized surfaces are very similar. The same position of the N1s\(_{\text{An}}\) and the S2p\(_L\) energy levels of D5L2A1 and D9L2A1 indicate that the addition of the methoxy groups does not influence the energy levels in the linker and anchor units of the dye molecules when adsorbed at the TiO₂ surface. Interestingly, the similar binding energy also obtained for the S2p\(_L\) energy level in the D5L2A3 and D5L2A1 molecules indicates that the substitution at the anchor unit between the thiophene and the carboxylic acid group has a minor effect on the energy levels of the thiophene linker unit with respect to the substrate.

Turning to the binding energies of the donor units when adsorbed at the TiO₂ surface the changes are more pronounced. In Table 4, it can be seen that the binding energies of the donor unit, represented by the N1s\(_D\) core level, are very similar for the D5L2A3 and D5L2A1 dyes relative the Ti2p energy level. This may be expected since the donor molecular structures are the same. However, the energy level of the donor unit in the D9L2A1 molecule differs by approximately \(0.15\) eV toward lower binding energies relative to D5L2A1.

In summary, the effect of the addition of the methoxy units is thus only a shift of the energy level related to the donor unit towards lower binding energies relative to the TiO₂ substrate. The similar binding energies experimentally observed for the N1s\(_D\) relative to Ti2p of the D5L2A1 and the D5L2A3 sensitized samples imply that the substitution of the anchor
unit does not have any influence on the donor unit of the D5L2A3. With respect to the visible light absorbing properties for these dyes, shifts in the donor unit towards lower binding energies is expected to induce a red shift of the adsorption spectrum. Indeed, such a red shift of the absorption maximum was found when comparing D9L2A1 and D5L2A1 dissolved in ethanol solution.9

4.3.3 Adsorption induced energetic changes.

It was noted above that the binding energy difference between the donor, N1S\text{D}, and linker, S2p\text{L}, units for the multilayer was in accordance with the theoretical calculations and thus indicate that there is no specific intermolecular interaction in this part of the molecule. The adsorption of the dyes to the TiO2 surface involves strong chemical bonding between the dye molecule and the surface, and such adsorption may influence the internal energetic properties of the dye molecules itself. We will now focus on the effect of the adsorption by comparing the relative binding energies of the dye donor and linker unit in the sensitized sample with respect to the dye multilayer sample.

A comparison of the trends in the binding energy differences is shown in Table 5. (Since the calibration of the multilayered sample was made through the S2p\text{L} unit, this value becomes 0 eV.) Firstly, it may be noticed that there are large differences between energy levels of the dye molecules in the sensitized sample compared to the multilayered sample. The differences between the linker and donor units show that the adsorption to the TiO2 surface affects the electronic structure of large parts of the dye molecules, not only the anchor group.

Further, when comparing the different dye molecules, the trends given in Table 5 show that the surface always induces similar specific electronic changes, both with respect to magnitude and direction of the core level shifts. For the D5L2A1 molecules, the difference is about 0.3 eV at the donor unit, and the D9L2A1 and D5L2A3 molecules have similar overall differences, although the values for D9L2A1 are somewhat lower and for D5L2A3, somewhat higher. The observed changes imply that the ground state energy level matching of the dye molecules are changed upon adsorption to the surface.

The differences between the dye molecules in the dye-sensitized sample compared to in the multilayered sample originate from the surface adsorption and the electronic changes can be interpreted as a sign of strong interaction and large electronic coupling to the surface. However, the effects may also be a consequence of the fact that the molecules have all lined up relative the TiO2 surface. The specific molecular ordering of the dye-sensitized surface implies that the strong dipole moments of these molecules, 10.88 D, 12.22 D, and 13.46 D for D5L2A3, D5L2A1, and D9L2A1, respectively (all pointing from the anchor unit to the donor unit), are lined up relative to the TiO2 surface. This organization results in the formation of a dipole layer and the electric field over this layer would affect the energy of photoparticles transferred over the interface. While such effects may also be of importance for the molecular functions in a DSC, the dipole moments may be efficiently screened by an electrolyte surrounding the molecules. However, in the solid state DSC, this screening may not be as efficient as in the liquid DSC and may therefore play a more important role. Most likely, the differences found between the binding energies of the monolayer and multilayer is a combination of surface interaction and intermolecular interaction, such as the formation of a dipole layer.

5. Summary

The surface electronic and molecular structures of three related organic dyes, D5L2A1, D9L2A1, and D5L2A3, for use in molecular solar cell devices and with the structure donor–linker–anchor have been investigated using photoelectron spectroscopy. It is found that all molecules form a rather close packed molecular layer on the TiO2 surface. Comparing the molecules, D9L2A1 has shown the highest conversion efficiencies.9 Still, however, it was found that the more bulky donor unit in D9L2A1, containing methoxy groups, reduced the coverage by approximately 20% in comparison with D5L2A1 and D5L2A3.

The trends observed in peak intensities support a molecular surface configuration for all dyes, in which the dye molecules are bonded to the surface with the anchoring unit close to the TiO2 substrate and the donor unit pointing out from the surface. The general design of the investigated molecules, with the HOMO mainly centered on the donor unit and the LUMO mainly centered at the linker and anchor units, favors efficient

Table 4 Experimental PES core level binding energies for the D5L2A3, D9L2A1 and the D5L2A1 molecules. The theoretically calculated PES binding energies are energy calibrated by setting the S2p\text{L} to the same binding energy as for the dye-sensitized samples

<table>
<thead>
<tr>
<th>Unit</th>
<th>Core level</th>
<th>D5L2A3/eV</th>
<th>D5L2A1/eV</th>
<th>D9L2A1/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DS</td>
<td>ML</td>
<td>Theo</td>
</tr>
<tr>
<td>Donor</td>
<td>O1s\text{D}</td>
<td>399.77</td>
<td>399.36</td>
<td>397.37</td>
</tr>
<tr>
<td></td>
<td>N1s\text{D}</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Linker</td>
<td>S2p\text{L}</td>
<td>163.92</td>
<td>163.92</td>
<td>163.92</td>
</tr>
<tr>
<td>Anchor</td>
<td>S2p\text{An}</td>
<td>400.68</td>
<td>400.57</td>
<td>400.02</td>
</tr>
<tr>
<td>Anchor</td>
<td>N1s\text{An}</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*There is a small difference in binding energy for the two methoxy oxygens.

Table 5 The core level binding energy difference between the same experimentally measured dye-sensitized (D-S) and multilayer sample peaks

<table>
<thead>
<tr>
<th>Peak</th>
<th>$E_{\text{B,D-S}}$, $E_{\text{B,Multil}}$</th>
<th>D5L2A3/eV</th>
<th>D5L2A1/eV</th>
<th>D9L2A1/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1s</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.26</td>
</tr>
<tr>
<td>N1s\text{D}</td>
<td>0.41</td>
<td>0.3</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>S2p\text{L}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S2p\text{An}, N1s\text{An}</td>
<td>0</td>
<td>0.1</td>
<td>−0.08</td>
<td></td>
</tr>
</tbody>
</table>
light induced charge injection for such a surface configuration. However, a detailed investigation of the S2p spectrum indicates that a fraction of the molecules (about 10–20%) adsorb in a different configuration. With respect to the function in a solar cell configuration, this allows for a mixture of charge transfer kinetics over the interface.

The energy matching between the different constituents of the interfacial region is important for the light induced charge transfer reactions. The element specificity of PES, as well as theoretical calculations, were used to investigate electronic effects from changes in donor and linker structure, as well as from surface adsorption. Specifically, it was found that the theoretical calculations model the relative core level binding energies of the donor and linker units in the multilayered sample and that the donor modification only gives rise to small relative variations.

The element specificity of PES was also used to investigate the effect of the adsorption to the TiO2 surface on the energetic properties of the dye molecules on a sub-molecular level. The investigation show large differences between energy levels of the dye molecules in the sensitized sample compared to the molecule by proper molecular modification but also shows the importance not only of controlling the levels of energy levels as a consequence of the surface molecular configuration. The anchor substitution, on the other hand, has only a minor influence on the energy levels of the donor and linker units. With respect to charge transfer reactions in a device, this result shows the importance not only of controlling the levels of the molecule by proper molecular modification but also controlling molecular surface structures resulting from the dye sensitization procedure.

Acknowledgements
This work was supported by the Swedish Research Council (VR), the Göran Gustafsson Foundation, the Carl Trygger Foundation, the Knut and Alice Wallenberg foundation, and the Swedish Energy Agency. We thank the staff at MAX-lab for competent and friendly assistance. The theoretical modeling was made possible through generous allocations of computer time at the Swedish National Supercomputer Center (NSC) and Center for Parallel Computing (PDC), Sweden.

Notes and references

