Similarly to atomic systems quantum dots can be driven resonantly. Therefore, the population can be exchanged between the ground and the excited state coherently. This means that by a proper choice of the excitation pulse area one can excite the quantum dot with near unity probability. Quantum dot photons can give us polarization and time-bin entanglement. While the degree of entanglement for the polarization entanglement depends predominantly on quantum dot's symmetry, the time-bin entanglement can be achieved from asymmetric dots too.

**References**

Hyper-entanglement of photons emitted by a quantum dot

M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs and A. Predojević

Coherence and degree of time-bin entanglement from quantum dots.

T. Huber, L. Ostermann, M. Prilmüller, G. S. Solomon, H. Ritsch, G. Weihs, and A. Predojević (Phys. Rev. B **93**, 201301(R) 2016) - arXiv

Time-bin entanglement from quantum dots

G. Weihs, T.Huber, A. Predojević. (chapter in Springer's Quantum Dots for Quantum Information Technologies) - arXiv

Resonant excitation and photon entanglement from semiconductor quantum dots.

A. Predojević (chapter in Spriger's Engineering the Atom-Photon Interaction) - arXiv

Time-bin entangled photons from a quantum dot

H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G. S. Solomon, and G.Weihs, (Nature Communications** 5**, 4251, 2014) - arXiv

Deterministic photon pairs and coherent optical control of a single quantum dot

H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G. S. Solomon, and G. Weihs (Phys. Rev. Lett. **110**, 135505, 2013) - arXiv