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Abstract 
Statistical disclosure control (SDC) is a set of methods that are used to reduce the risk of 
disclosing information on individuals, businesses or other organizations. There is a wide 
range of different techniques for SDC according to different kinds of data, while here the 
focus is on sensitivity rules about how to define whether a cell in the tabular data has the risk 
of disclosing information. The current sensitivity rules include the dominance rule, the p% 
rule and the p-q rule. However, we have discovered some problem with the p% rule and 
Professor Johan Bring who is the founder of the statistical consultancy “Statisticon” has come 
up with a new method and named it the “Statisticon rule”.  

There are many discussions in the previous literature regarding which rule is more 
conservative, i.e. which rule classifies more cells to be sensitive. However we believe that no 
rule is more conservative than the other, and simply by changing the value of the parameters, 
each rule can be adjusted equally conservative. Instead of focusing on distinguish which rule 
is more conservative, we attempt to detect when the different rules classify a cell to be 
sensitive rather than how often they classify cells to be sensitive in this thesis. 

Pairwise comparisons based on simulation were made and one of the most important results 
indicates that when the number of sensitive cells are set up to be the same, the dominance rule 
and the p% rule have a lot in common when it comes to whether to classifying a cell to be 
sensitive, but the Statisticon rule and the p% rule differ a lot from each other. The p% rule 
tends to classify a cell to be sensitive when it has only one observation with extremely big 
value, and the Statisticon rule tends to classify a cell to be sensitive when it has two 
observations with big values.  

When there are strong reasons to believe that it is more dangerous when the true value of the 
biggest contributor to a cell is closer to the upper boundary of the estimated value that the 
second largest contributor can assume, the p% rule is a better choice. Otherwise, the 
Statisticon rule is more general since it also takes into consideration that the interval of the 
largest contributor that the second largest contributor could calculate and is therefore more 
preferred than the Dominance rule and the p% rule.  

 

Key words: statistical disclosure control, tabular data, cell suppression, sensitivity rules, 
simulation 
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1. Introduction 
This chapter is used to discuss the general background and the main goal of conducting this 
research. Furthermore, a brief outline on the orgnization of this thesis is given. 

1.1Background 
National Statistical Institutions (NSIs) are expected to provide our society with trustworthy 
and detailed statistical outputs, however these statistical outputs may sometimes lead to 
disclosure of some sensitive and confidential information, which might cause harm on both 
individual level and organization or group level. For the individuals this is more likely related 
to privacy whereas for organizations or companies, the connection is more connected with 
issues such as commercial secrets and obviously this is not the intention of publishing the data. 

In order to protect the confidentiality of survey respondents – not only because of legal and 
ethical mandates, but because public trust and perceptions of that trust are important 
contributors to data quality and response rates (Doyle et al, 2001), NSIs have come up with a 
set of different methods to protect the confidentiality of the information provided by the 
respondent. A very good expression quoted from Statistics Sweden about the aim of statistical 
disclosure control is “to show the forest instead of the tree”.  

1.1.1 What is disclosure risk? 
A disclosure occurs when a person or organization recognizes or learns something that they 
did not know already about another person or organization, via released data according to 
Duncan et al (2001). Such person or organization that intends to know something about others 
is referred to as intruder.  

There are three types of disclosure risk: identity disclosure, attribute disclosure and inferential 
disclosure. Identity disclosure occurs with the association of a respondent’s identity with a 
disseminated data record containing confidential information (Duncan et al 2001). In other 
words, an intruder could identify a specific individual or organization according to the 
statistics published.  

Attribute disclosure occurs with the association of either an attribute value in the disseminated 
data or an estimated attribute value based on the disseminated data with the respondent 
(Duncan et al 2001). This is to say an intruder could determine the value of some survey 
variable for an identified individual or organization using the statistical output (Skinner, 
2009).  

Inferential disclosure occurs when information can be inferred with high confidence from 
statistical properties of the released data. For example, the data may show a high correlation 
between income and purchase price of a home. As the purchase price of a home is typically 
public information, a third party might use this information to infer the income of a data 
subject (OECD Glossary of Statistical terms, 2013).  

1.1.2 What is Statistical Disclosure Control (SDC)? 
In order to prevent such disclosure from happening, statistical institutes are responsible to 
utilize some approaches to reduce the disclosure risk and further to protect the confidentiality.  
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Statistical disclosure control (SDC) techniques can be defined as the set of methods that are 
used to reduce the risk of disclosing information on individuals, businesses or other 
organizations (Hundepool et al, 2010). There is a wide range of different techniques for SDC 
according to different kinds of data. More detailed information about the approaches is going 
to be discussed in the method/theory chapter. The main goal of SDC is to find a balance point 
where the disclosure risk is reduced within a tolerable level and meanwhile the information 
provided by data is as much as possible.  

1.1.3 How does SDC influence the data?  
Using SDC will apparently disturb the information of the data, which means the utility is 
therefore decreased. Figure 1 is a map of disclosure risk (R) and utility of the data (U); 

 

Figure 1 R-U Confidentiality map 

The original data has the largest utility but also the highest disclosure risk. On the contrary, if 
no data were published then there would be no risk of disclosure; however, this disobeys the 
responsibility of statistical institutions. The released data should therefore be, with the help of 
SDC approaches, located somewhere under the maximum tolerable risk line and have the 
utility as large as possible. In a word, the goal is to minimize disclosure risk while 
maintaining the analytic utility of the data. 

1.2 Research question and aim 
The main focus of this thesis is on one of the most popular SDC approaches for tabular data 
—cell suppression. The research question and the aim of this thesis is to compare the different 
sensitivity rules for cell suppression at the primary level and thereafter find out in what 
conditions are these sensitivity rules suitable to be applied. 

1.3 Organization of the thesis 
This thesis begins with introducing the background and purpose of the research question. 
Thereafter in the theory chapter, different sensitivity rules of the approach “cell suppression” 
in SDC are presented. Additionally a new rule is introduced and formulated. Afterwards a 
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chapter about comparison between the different rules based on simulation comes and the 
results are discussed. The thesis ends with a discussion chapter, where all the results and 
conclusions are summarized and discussed. 
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2.  Theory  

2.1 Micro-data and Macro-data 
Generally speaking, the data that NSIs publish are comprised of two kinds--micro-data and 
macro-data. Micro-data Files are data sets containing for each respondent the score on a 
number of variables (Hundepool et al, 2010). It is easily understood that such data have high 
possibility of both identity disclosure and attribute disclosure since it contains details for 
every single respondent.  

The disclosure rate could be managed by SDC or by restricting access of the data. There are 
very strict restrictions when distributing private data in Sweden. It is illegal to publish any 
individual’s information and the regulations are very rigid even for research purposes (Public 
Access to Information and Secrecy Act (Offentlighets och sekretesslagen), 2009). Hence 
micro-data is not the focus and is not going to be discussed in this thesis.  

Macro-data on the other hand, which could also lead to disclosure and especially group 
disclosure, is the main focus of this research. Magnitude table and frequency table are two 
major components when displaying macro-data.  

2.2 An example on tabular data disclosure 
It might be non-intuitional that disclosure happens for such aggregate forms as well. This is 
possibly due to e.g. the object in the cell is unique. However, uniqueness is not a necessary 
condition for disclosure. Table 1 shows a simple artificial example illustrates the situation: 

Table 1 Level of income at University S (artificial data) 
 

Departement Low Income High Income Total  
A 8 4 12 
B 10 1 11 
C 1 0 1 
D 5 0 5 

Total 24 5 29 
 
There is only 1 person (unique) working at department C with a low income.  Therefore, the 
income level is disclosed as long as it is known that she/he works at department C. Similarly, 
it is easily deduced that all people working at department D have low income too, despite the 
object in the cell low income is 5 (not unique). This is called group disclosure. When taking a 
look at department B, there are 10 people with low income and 1 with high income, therefore, 
the one who has the high income would know that she/he is the only one in this department 
who has high income. The disclosure happened within the group could sometimes be more 
harmful than disclosure from the outside. 

2.3 SDC approaches 
There are different options available for SDC approaches when a cell in a table is identified as 
sensitive. Generally speaking, the SDC approaches could be divided into two categories, 
namely perturbative methods and non-perturbative methods.  
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Perturbative methods allow for the release of the entire micro data set, although perturbed 
values rather than exact values are given, for example adding noise to micro-data and then the 
table is formed from the perturbed micro-data. (Domingo-Ferrer and Torra, 2001) 
 
Non-perturbative methods do not rely on distortion of the original data but on partial 
suppressions or reductions of detail, for example global coding, which means a table can be 
redesigned by combining sensitive cells with other cells. (Whillenborg and De Waal, 2001) 
Alternatively the value of sensitive cells can be suppressed or modified so that the table 
comprises less detailed information (Hundepool et al, 2010), this is called cell suppression. 
 
In other words, perturbative methods changes the original data and the data released are not 
all true values. On the contrary, the data released using non-perturbative methods are true 
values but with less detailed information.  

2.4 Cell suppression 
Although there are many different approaches concerning SDC, the focus of this thesis is on 
cell suppression. Cell suppression does not conduct the protection by changing the 
information of the data but by subtracting detailed information of the data. Therefore, it is a 
non-perturbative method.  

Cell suppression is a popular and efficient SDC approach. However, it is important to 
recognize that it has some drawbacks. First of all, there might be some unnecessary 
information loss when applying cell suppression, though information loss is a general 
drawback for all SDC approaches. Secondly, some follow-up problems might occur after cell 
suppression. A simple artificial example is given to clarify this problem, Table 2 is about the 
level of subsistence allowance for different age group in city A： 

Table 2  Level of subsistence allowance in city A (artificial data) 
 

Age Groups 100 % 50 % 25 % Total 
20-30 1 0 0 1 
30-40 12 3 5 20 

Above 40 24 12 4 40 

 

There is no column total published with this table. The object for age group 20-30 with 
subsistence allowance level at 100% is only 1 and should therefore be primarily suppressed, 
the row total for that age group should also be secondarily suppressed. However, the next 
month, some other resources publish the total number of people in city A having 100% 
subsistence allowance, and one could combine these two tables together to disclose the 
suppressed cell. Therefore, when applying cell suppression, there is always risk when some 
supplementary information is published.  

There are two steps in the cell suppression procedure. The first step is called “primary 
suppression” by using different criteria, namely sensitivity rules, to determine which cells are 
primary unsafe. If a table presents marginal totals, which is usually the case, then there is an 
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additive relationship between the cells of the table. Therefore, it is not enough to consider 
disclosure risk on the level of individual cells only, but additional cells must be suppressed as 
well. This second step is called “secondary suppression” or “complementary suppression” 
(Hundepool et al, 2010). To be more precise, this thesis goes deeply into comparison of 
different sensitivity rules in “primary suppression” in particular.  

Before penetrating different sensitivity rules, let 𝑥!   ≥ 𝑥! ≥  …   ≥ 𝑥!   be the ordered 
contribution in a cell by respondents 1,2,…,N respectively and let X = 𝑥!

!!! i. A discussion 
about the most well-known sensitivity rules concerning “primary suppression” is given as 
following: 

2.4.1 The dominance rule 
The dominance rule is also called the (n, k) rule. The cell is primarily considered unsafe if the 
total of the n largest contributions exceeds k% of the total cell value X  

That is the cell is unsafe according to this rule if and only if: 

                                                       𝑥! + 𝑥!+ … + 𝑥!> k/100 * X                                             (1) 

2.4.2 The p% rule 
The p%-rule is based on the following inequality:  

                                                      X –   𝑥!   –  𝑥!  < p/100 * 𝑥!                                                      (2) 

The worst case of this inequality is to suppose 𝑥! as the largest respondent and 𝑥! as the 
second largest respondent, where the largest respondent is estimated by the second largest. 
The assumption for the “worst case” is therefore: 𝑥! knows it is the second largest contributor 
and is trying to estimate the largest contributor 𝑥!. As long as this condition is safe, the cell is 
safe for all other conditions. For the p% rule, a cell is considered sensitive if the cell total 
minus the 2 largest contributions is smaller than a certain percentage of 𝑥!, namely, 

                                                      X –  𝑥!  –  𝑥! < p/100 * 𝑥!                                                     (3) 

If the cell satisfies the above inequality, the cell is sensitive from the viewpoints of all 
respondents. The assumption for both dominance rule and p% rule is that there is no prior 
knowledge about the contribution for respondent  𝑥!. More detailed information could be found 
in (Loeve, 2001).  

2.4.3 Comparison of the dominance rule and the p% rule 
It is believed in many literatures that in general, the p% rule is preferred to the dominance rule 
because the dominance rule is more conservative than the p% rule, i.e. it provides more 
suppressions of the cell than the p% rule. For example in “Handbook on statistical disclosure 
control” (Hundepool et al, 2010) and “Statistical disclosure control in tabular data” (Castrol, 
2009), the dominance rule with n=2 is compared with p% rule, since when n=2 the dominance 
rule looks very similar to formulation of the p% rule.  
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The (2,k) rule classifies a cell as sensitive if 

                                         𝑥!+  𝑥! > k/100*X ⇔X −  𝑥!   −   𝑥!  < (1−k/100)*X.                         (4) 

Comparing (3) and (4), it is seen that in both cases a cell is sensitive if (X −  𝑥!) −   𝑥!, i.e. the 
difference between the estimation of   𝑥! made by second respondent and the true value of  𝑥!, 
is less than a certain percentage of either the first respondent value   𝑥! in (3) or the cell value 
X in (4). Indeed, for p and k such that k = 100 * !""

!""!!
, every non-sensitive cell for the rule 

(2,k) is also a non-sensitive cell for the p% rule; but the reverse implication does not hold.  

Above are the argumentations about why the dominance rule is not as good as the p% rule. 
However, none of the articles give the motivation about why to limit the analysis to k = 100 
* !""
!""!!

. When this equation doesn’t hold, these two rules are not comparable any more. Each 

rule can be made equally restrictive by changing the value of parameters and hence it is very 
hard to tell which rule is better. A more detailed comparison based on simulation that support 
this argumentation is going to be discussed in the next chapter.  

2.4.4 The p-q rule 
The P-q rule is an extension of the p%-rule, which is also called prior posterior rule. As stated 
above, there is no prior knowledge about the contribution for respondent  𝑥!. In the p-q rule, on 
the contrary, all respondents in a cell are assumed to know the values of the other 
contributions to that cell within at most q percent (Loeve, 2001). The cell is sensitive 
according to the p-q rule if  

                                                         p *   𝑥! – q *   𝑥!!
!!!  ≥ 0                                                (5) 

This rule is not commonly applied since it is impractical in reality. It is very difficult to 
indicate how much knowledge all respondents know about the other contributions, i.e. to 
evaluate q.  

2.4.5 Drawback with the p% rule 
Suppose a cell is the sum of three respondents A, B and C.  Assume B has the share 40 and 
the total sum is 100.  These are all pieces of information known to B and B could calculate the 
interval of the largest company (either A, C or B itself) is (40, 60). There are many different 
combinations of the values for A and C. For example the values of A, B and C could be (59, 
40, 1) or (41, 40, 19)  

According to the p% rule in inequality (3), the cell is identified as sensitive when the values 
of A, B and C are (59, 40, 1) and safe when (41, 40, 19), which seems that when A (or C) is 
closer to the upper bound (which is 60 in this example) of the interval calculated above the 
cell is considered sensitive, on the contrary, when A (or C) lies near by the lower bound of the 
interval (which is 40 in this example) the cell is considered safe. This is problematic because 
the share of the B has stayed unchanged with value 40 and information that B remains the 
same. There is no additional knowledge about the other respondents in case of (59, 40, 1) than 
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in (41, 40, 19). It can be argued that it is unreasonable that the former is sensitive but the latter 
is safe. The following Figure 2 illustrates this problem.  

 

 

 

Figure 2 whether a cell is sensitive or safe depending on the distribution of A and C. 
Assuming X = 100 and B = 40 

When either A or C is closer to the upper bound (which is 60 in this example), the cell is 
sensitive and otherwise the cell is safe. However, 59 and 41 have the same distance to the 
limits of the interval. This is unreasonable because from B’s point of view, it should not make 
any difference whether A (or C) is 41 or 59, the disclosure would happen despite the share of 
the A (or C). What makes a difference is the size of the interval where A (or C) is located.  

It is assumed in the book “Handbook on statistical disclosure control” (Hundepool et al, 2010) 
that when there are no coalitions of respondents, the closest upper estimate of the largest 
contributor can be obtained by the second largest contributor, by subtracting her own 
contribution  𝑥!   from the aggregate total X, i.e. 𝑥1 = X –   𝑥!  . If the difference between the 
estimated 𝑥1 and the true value   𝑥! is too small, i.e. X –  𝑥!  –  𝑥! < p/100 * 𝑥!, then the cell is 
considered sensitive. 

However, this assumption  is questionable, take the above example again: the second largest 
contributor B = 40 and the aggregate X = 100, then B knows the largest contributor lies 
between 40 and 60. If no other information obtained, a smart guess would be around 50, there 
is no supporting evidence for B to estimate 𝑥1 = X –   𝑥!  = 60 because the probability that the 
largest contributor is 60 is much lower than that for 50. From this aspect, the p% rule is not 
theoretically solid since it is based on the assumption that 𝑥1 = X –   𝑥!  .  

2.4.6 The Statisticon rule 
Concerning the problem of the p% rule, Professor Johan Bring has come up with a new 
sensitivity rule, which is based on the information that the intruder knows. Professor Bring is 
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the founder of the statistical consultancy “Statisticon”, therefore he named the new rule the 
“Statisticon rule”. 

The principle of the Statisticon rule is that the decision if a cell is safe or sensitive should only 
be based on the information from the intruders’ perspective. If the intruder respondent j is 
trying to estimate another respondent i, say   𝑥!  is estimating  𝑥!  , based on the information that 
intruder knows, it is possible to calculate the interval I where respondent i may lie in, i.e. 
𝐼𝑥𝑖 =   𝑥!  !"# −      𝑥!  !"#. If this interval is very narrow, there is risk for disclosure. A cell is 
classified sensitive when:  

                                                               𝐼!!< s/100 * X                                                            (6) 

The “worst case” here is again when supposing 𝑥! is the largest respondent and 𝑥! is the 
second largest respondent, where the largest respondent is estimated by the second largest. 
The assumption for the “worst case” is therefore: 𝑥! knows it is the second largest contributor 
and is trying to estimate the largest contributor 𝑥!. As long as this condition is safe, the cell is 
safe for all other conditions. For the Statisticon rule, a cell is considered sensitive if the 
Interval for 𝑥! is smaller than a certain percentage of X, namely, 

                                                              𝐼!!< s/100 * X                                                            (7) 

Now the question is how to calculate 𝐼𝑥1 =   𝑥!  !"# −      𝑥!  !"#. We could easily estimate that 
𝑥!  !"#    = X -  𝑥!, and for 𝑥!  !"# is a bit more complicated: 

              𝑥!  !"# =   X− n− 1 ∗   𝑥!            𝑤ℎ𝑒𝑛  X− n− 1   𝑥! > 𝑥!, namely    𝑥! < X/n
  𝑥!                                        𝑤ℎ𝑒𝑛    𝑥! ≥ X/n                                                                                            (8) 

Let us review the example in 2.4.5 again: suppose a cell is the sum of three respondents A, B 
and C.  Assume B has the share 40 and the total sum is 100. Now B is in the position of   𝑥! 
and trying to estimate   𝑥!. Then 𝑥!  !"#    = X −  𝑥! = 100− 40 = 60 and since 40 > 100/3 è 
𝑥!  !"#    =   𝑥! = 40 and the interval 𝐼𝑥1 =   𝑥!  !"# −      𝑥!  !"# = 60− 40 = 20. If we set s = 25, 
we get 20 < 25/100 *100, and the cell is sensitive; if we set s = 15, we get 20 > 15/100 * 100, 
and the cell is safe. Different from the P% rule, the Statisticon rule classifies a cell to be 
sensitive only on the interval of   𝑥! and different value of s. It does not matter whether the 
combination of the values for A and C is (59, 40, 1) or (41, 40, 19), because the information 
that B knows has not changed at all.  
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3 Comparisons between sensitivity rules based on simulation 
In order to compare the different sensitivity rules in a deeper and more intuitive way, 
simulations are introduced. In this chapter, the simulation setup and the conclusions draw 
from analyzing the result of simulation are going to be presented.  

3.1 Simulation Setup 
Two different types of distributions are used for simulation, namely the exponential 
distribution and normal distribution. 

The reason why to simulate from exponential distribution is due to its characteristic: suppose 
x~exp (𝜆 = 1), the frequency decreases as the value of x increases, the histogram is presented 
in Figure 3: 

 

Figure 3 Histogram of x, where x is simulated for 1000 times and follows exponential 
distributed with 𝜆 = 1 

The feature of exponential distribution represents a plausible scenario of the cases for 
disclosure – when there is one or two extreme values the possibility of disclosure is high. 
Normal distribution is also included in simulation as an alternative distribution because it is 
the most common distribution and many data follow normal distribution.   

1) Fundamental construction  
Create an N*n matrix X, where M is the total amount of simulation and let N = 1000. 
Each row of X is referred as a “dataset”. Each dataset contains n observations 
(  𝑥!,   𝑥!,… ,   𝑥!) which follow one of the above-mentioned distributions, where n 
ranges from 3 to 20, is the number of observations in each dataset of the matrix X. The 
aggregate X = 𝑥!

!!! i for each dataset is referred as a “cell”. As mentioned in the 
theory chapter, 𝑥!   ≥ 𝑥! ≥ …  ≥ 𝑥!  are the ordered contribution of the dataset by 
respondents 1,2, …, n respectively.  
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Here is an example of the first ten datasets in matrix X when n=4 and x is generated 
from exponential distribution with 𝜆 = 1.    Note here the observations (  𝑥!,   𝑥!,   𝑥!, 𝑥!) 
are not ordered.  
 
Example 1 First ten datasets (the total amount of datasets is M = 1000) in matrix X 
when n=4 and x follows exponential distribution with 𝜆 = 1 

 

 
 

2) Definition of the rules 
Define the three sensitivity rules, namely the dominance rule, the p% rule and the 
Statisticon rule according to the formulas mentioned in the theory chapter. For 
convenience’s sake, these three rules are denoted as D, P and S respectively.  
 

3) Build sensitivity matrix for each rule 
Use the defined rules above to construct a matrix for each rule that conveys 1000 rows 
and m columns, where m represents the parameter in each rule, namely k in the D, p in 
the P and s in the S, and they range from 1 to 100. The value of each elements in the 
matrices are either 1 or 0, where 1 represents the dataset is identified as sensitive by 
the corresponding sensitivity rule, and 0 otherwise.  Thus three matrices, Dmatrix, 
Pmatrix and Smatrix are formulated, all of them are 1000 by 100 matrices with 
values of 1s and 0s. Here the number of observations n in each dataset is fixed to be 4.  
 
Here is an example of the first ten rows and 14 columns in matrix Pmatrix when n=4 
and x is generated from exponential distribution with 𝜆 = 1. 
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Example 2 First ten rows and 14 columns in matrix Pmatrix when n=4 and x follows 
exponential distribution with 𝜆 = 1 
 

 
 
For example, the 5th row means the 5th dataset, where the first 6 elements are 0 and 
the rest are 1, indicating that the dataset is sensitive if p  ≥ 7. Hence, this matrix tells 
us that for which values of p the dataset is classified as sensitive and the column sum 
shows how many datasets are classified as sensitive for each value of p.  
 
Draw a plot for the three rules simultaneously, where the x-axis represents different 
values of m and y-axis is each column sum, which means the number of sensitive 
datasets identified by different rules.  
 

4) Pairwise comparison when n is fixed 
In order to make pairwise comparison between the rules, we should first make sure 
that these three rules are comparable. The number of sensitive datasets y represents the 
degree of confidentiality of the data. When the total number of sensitive datasets 
classified by different rules are the same, that is, (sensitive datasets / total datasets) | D 
= (sensitive datasets / total datasets) | P =  (sensitive datasets / total datasets) | S, we 
could assume the three rules are equally restrictive as each other. This could be 
achieved by changing the value of the parameter.  
 
We should first determine the number of observations n in each dataset and the total 
number of sensitive datasets y. In this case, we choose n = 4 and y = 200 for all three 
rules. For example when y = 200 out of the total simulated datasets 1000 means 20% 
of the datasets are sensitive for all three rules. Only when the number of observations 
and the confidentiality of the data are fixed, we can start the pairwise comparison. 
Other values can be chosen as needed.   
 
Thereafter, the pairwise comparisons between the rules could be made. Calculate the 
value of parameters that make the total number of sensitive datasets equal 200 for each 
rule, we get k = 89, p = 18, and s = 27. Even though the number of sensitive datasets 
are equal for each rule, which datasets are the sensitive ones are not necessarily the 
same for all three rules. The idea is to pick out all the datasets that are classified as 
sensitive by one rule but as safe by another and analyze the characteristics of such 
datasets.   
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Take the comparison between P and S as an example, construct a matrix A containing 
all the dataset that are calculated to be “1” according to P but at the same time 
calculated as “0” according to S. Similarly, construct matrix B containing all the 
dataset that are calculated to be “1” for S but at the same time calculated as “0” for P. 
Afterwards, plot all the 4 observations in each dataset in A and B separately and 
inspect if there is any pattern shown. (Note here that the elements should be presented 
in percentage instead of the real value for a better comparison.) Briefly put, matrix A 
contains all the datasets that are identified to be sensitive by P but safe by S and matrix 
B contains all the datasets that are identified to be sensitive by S but safe by P. 

Example 3 First ten rows in matrix A where all the datasets are identified to be 
sensitive by P but safe by S and B where all the datasets are identified to be sensitive 
by S but safe by P, when n=4 and x follows exponential distribution with 𝜆 = 1 

                      
                         Matrix A                                                                Matrix B                           
 
In order to compare the variability and analyze the characteristic of matrix A and B, 
we can calculate the standard deviation for each dataset and then calculate the average 
standard variation for all the datasets in A and B respectively. Additionally, calculate 
the difference between the largest and the second largest element in each dataset for A 
and B respectively. The same procedure is repeated for comparing P and D as well as 
S and D. 
 

5) Contour plot of the number of sensitive datasets when n and m are unfixed 
In the previous stages, the value of n and y are fixed, naturally, the corresponding 
value of m for each rule can be calculated and are also fixed values for all of the three 
rules. As a matter of fact, m, n and y compose a three-dimensional variation, the value 
for n, y and m can change simultaneously, and therefore a contour plot can give a 
good overview of this variation.  
 
Construct three matrices D.AmountSensitive, P.AmountSensitive, and 
S.AmountSensitive for each rule correspondingly, where the row is the number of 
elements in each dataset, n (ranges from 3 to 20 or more if needed), the column is the 
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value of m (ranges from 1 to 100), so there are in total 18 rows and 100 columns. The 
elements in the matrices are the number of sensitive datasets y classified by each rule 
in the corresponding m and n value. Thus, these three new build matrices are 18 by 
100 dimensioned. The contour plot should be drawn over these three matrices in order 
to give a general sight about how the total number of sensitive datasets changes as the 
number of element in each dataset n and the value of the parameter m changes for 
each rule.  
 
Example4 First 10 rows and 12 columns in matrix P.AmountSensitive when x follows 
exponential distribution with 𝜆 = 1 
 

 
 
In this example, the columns represent n, which ranges from 3 to 20, that is to say, [,1] 
represents n=3, [,2] represents n=4 and etc. Let us take the element in the first row and 
first column 8 as an example, it means when n=3 and p=1, there are 8 datasets 
classified as sensitive according to the P.  
 

6) Extension 
The total number of simulation N, the value of the number of elements in each dataset 
n, and the number of sensitive datasets y can all be modified into values according to 
the specific need. Same procedure could be done for the normal distribution or even 
some other distributions.  
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3.2 Result and discussion 
The results obtained from the previous section are presented in this chapter. Note here we 
assume the number of elements n in each dataset is 4 and x follows exponential distribution 
with λ=1. The results for normal distribution and other values of n could be referred to 
Appendices. 

3.2.1 Sensitivity plot 

 

Figure 4 Sensitivity plot: number of sensitive datasets plot of D, P and S as the value of m 
ranges from 0 to 100, when n=4 and x follows exponential distribution with λ=1 

It is worth mentioning again that here n ＝ 4 and the value could be modified if needed. The 
x-axis represents different values of m and y-axis is the number of sensitive datasets identified 
by different rules.  

The number of sensitive datasets decreases as the m increases for D, which is reasonable since 
it is consistent with the definition of the Dominance rule – the cell is identified as sensitive if 
the two largest shares of the cell are bigger than a certain value of m. If m is too small, almost 
all cells have the two largest shares bigger than m.  

For P and S, the situation is just the reverse. The value of the number sensitive datasets 
increases as the value of m increase. But the pattern for increasing for this two rules are not 
identical, and when m reaching a certain value, all of the datasets are classified as sensitive 
for S but that never happens to P even when m = 100.   
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This plot only shows the pattern of the number of the datasets that are identified as sensitive 
by each rule, however, there is no information about the characteristics of the sensitive 
datasets for each rule, for example, whether the datasets that are sensitive for D are the same 
ones as for P or S.   

3.2.2 Contour plot of the number of sensitive datasets of D, P and S 
Courant et al (1996) stated, “A contour of a function of two variables is a curve along which 
the function has a constant value.” The contour plot is a plot illustrated with contour lines. 
The lines represent the number of datasets classified as sensitive by each rule, the x-axis is the 
value of the parameter m (ranges from 1 to 100), and y-axis is the number of elements n in 
each dataset, ranges from 3 to 20. This contour plot shown in Figure 5 illustrates explicitly 
the trend of how the number of sensitive datasets y varies with the number of observations in 
a dataset n and the value of the parameter m (k for D, p for P and s for S).  

 

Figure 5 Contour plot: the number of sensitive datasets of D, P and S, when number of 
observations n in a dataset ranges from 3 to 20, and the value of parameter m ranges from 0 
to 100 and x follows exponential distribution with λ=1 

Some conclusions could be drawn:  

i. For all three rules, the smaller n is, the greater y is in general. For P and S, the bigger 
m gets, the greater y is, but it is opposite for D. When n is greater than 10, none of the 
datasets in P is sensitive but this characteristic does not appear for D and S.  
 

ii. The sensitivity lines for D and S are symmetric around the y-axis indicating that the 
trend of y varies with n and m are very similar between D and S. Even though the 
trend for D and S are similar, which datasets are the sensitive ones are not necessarily 
the same for them. Therefore, the conclusion that D and S are equivalent could not be 
achieved.  
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3.2.3 Pairwise comparison of P and S 
As we have discussed in the previous sub-chapter, in order to make the pairwise comparison 
between the rules, the number of sensitive datasets y should be fixed to be the same value. In 
the next step, the number of sensitive datasets y = 200, and the different values of parameter 
m that make the total number of sensitive datasets equals 200 are calculated for each rule, 
where k = 89, p = 18 and s = 27. Thereafter, the pairwise comparisons between the rules could 
be made. Even though the number of sensitive datasets is equivalent for each rule, which 
datasets are the sensitive ones are not necessarily the same for all. To begin with, the 
comparison between P and S is carried out (note here that the number of sensitive datasets for 
P and S are 199 and 187 respectively, but not exactly 200. This is due to the fact that k, p and 
s are rounded to the nearest unit), Table 3 shows the distribution of the sensitive datasets 
classified by P and S respectively:   

Table 3 The distribution of the sensitive datasets classified by P and S 

 S à  Sensitive S à  Safe Total 
 Pà  sensitive 75 124 199 

P à  safe 112 689 801 
Total 187 813 1000 

 

Even though the total number of sensitive datasets is limited to be the same for both P and S, 
in most conditions, these two rules are not equivalent: there are only 75 datasets that classified 
to be sensitive by both rules. 112 datasets are classified as sensitive by S but not by P 
(classified to group A), and 124 datasets are classified as sensitive by P but not by S 
(classified to group B).  

How does this table describe the extent of agreement between these two rules? According to 
Viera and Garrett (2005), the kappa coefficient is the most commonly used statistic for 
measuring agreement between two or more observers. A kappa of 1 indicates perfect 
agreement, whereas a kappa of 0 indicates agreement equivalent to chance. However, there is 
no clear cut-off point for kappa coefficient, Viera and Garrett (2005) suggest the following 
table, which may help to “visualize” the interpretation of the kappa coefficient in Table 4:  

Table 4 Interpretation of the Kappa coefficient 

 Poor Slight Fair Moderate Substantial Almost perfect 
Kappa 0.0 0.2 0.4 0.6 0,8 1.0 

 

The Kappa coefficient calculated between P and S is 0.24, which is close to a slight 
agreement, indicating that the extent of agreement between these two rules is low. In this case, 
it is very interesting to take a deep look at these datasets and detect how they differ in group A 
and B.  

We start with giving a simple typical case in group A and B respectively by taking the median 
of the observations 𝑥!, 𝑥!, 𝑥! and 𝑥! in every dataset (note here that the observations should 
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be presented in percentage instead of the real value for a better comparison), a typical case for 
each group is provided in Table 5: 

Table 5 Typical cases for group A (sensitive by P but safe by S) and B (safe by P but sensitive 
by S) 

 Typical case 

A (sensitive by P but safe by S) 𝑥! =   0.69, 𝑥! =   0.23, 𝑥! =   0.06, 𝑥! = 0.02 
B (safe by P but sensitive by S) 𝑥! =   0.45, 𝑥! =   0.38, 𝑥! =   0.12, 𝑥! = 0.05 

 

It could be seen that in group A, namely the datasets that are classified as sensitive by P but 
safe by S, the value of 𝑥! is much greater than all the other elements in the same dataset, 
meanwhile in group B, where the datasets are classified as safe by P but sensitive by S, the 
value of 𝑥! and 𝑥! are both quite large compared with the rest elements in the same dataset. 

Plot these two typical cases so that we can get a more intuitive grasp in Figure 6: 

 

Figure 6 Plot of 𝑥!, 𝑥!, 𝑥! and 𝑥! of the typical case for A and B, when x is generated from 
exponential distribution with λ=1,number of observations n = 4, and the number of sensitive 
datasets y = 200 

The same conclusion could be drawn by inspecting Figure 6, in group A, 𝑥! is far away from 
the other elements, however in group B, 𝑥! and 𝑥! are quite close to each other and far from 
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the rest of the elements. We now want to detect if all the datasets in group A and B show the 
same pattern, this could be realized by drawing the same plot for all the datasets for group A 
and B respectively. A more general grasp of these two groups is illustrated in Figure 7: 

 

Figure 7 Plot of 𝑥!, 𝑥!, 𝑥! and 𝑥! for all datasets in A and B, when x is generated from 
exponential distribution with λ=1,number of observations n = 4, and the number of sensitive 
datasets y = 200 

It is quite obvious that Figure 7 shows the same pattern as in Figure 6: in group A, 𝑥!s are 
extremely large (greater than 50%), the percentage for 𝑥!s, 𝑥!s and 𝑥!s are close to each other; 
on the contrary, in group B, the share of 𝑥!s and 𝑥!s blend together, despite there are some 
extremely large outliers for 𝑥!. If the above two plots only give an intuitionistic overview, 
then the next step proves this conjecture in a more concrete way. Calculate the average 
standard deviation of datasets the and calculate the difference between 𝑥!s and 𝑥!s for group 
A and B respectively which are shown in Table 6: 
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Table 6 The average of the standard deviation and the average of the difference between 𝑥! 
and 𝑥! for all datasets A and B 

 Mean (sd) Mean (Difference between 𝒙𝟏s and 𝒙𝟐s) 
A (sensitive by P but safe by S) 1.36 1.98 
B (safe by P but sensitive by S) 0.83 0.53 

 

Table 6 gives the same conclusion: The average difference between the corresponding 𝑥!s and 
𝑥!s in A is much bigger than that in B, and the average standard deviation in A is greater than 
that in B. To be more exact, P tend to classify a dataset to be sensitive when it has one 
observation with extremely big value, and S tend to classify a dataset to be sensitive when it 
has two observations with big values.  

3.2.4 Pairwise comparison of D and S 
The same procedure repeated for comparing D and S as well as P and D. And the results are 
as following: 

Table 7 The distribution of the sensitive datasets for D and S 

 S à  Sensitive S à  Safe Total 
 Dà  sensitive 78 118 196 

D à  safe 109 695 804 
Total 187 813 1000 

 

The distribution of the sensitive datasets for D and S is quite similar to P and S in Table 3: 
there are only 78 datasets that are classified to be sensitive by both rules. 118 datasets are 
classified as sensitive by D but not by S, and 109 datasets are classified as sensitive by S but 
not by D. The Kappa coefficient calculated between D and S is 0.27, which is also close to a 
slight agreement, indicating that the extent of agreement between these two rules is low.   

Repeat the same procedure when comparing D and S, construct two matrices R and U, where 
R contains all the datasets that are classified as sensitive by D but safe by S, and U contains 
all the datasets that are classified as sensitive by S but safe by D. Afterwards, plot these 
datasets for R and U respectively in Figure 8: 
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Figure 8 Plot of 𝑥!, 𝑥!, 𝑥! and 𝑥! for all datasets in R and U, when x is generated from 
exponential distribution with λ=1,number of observations n = 4, and the number of sensitive 
datasets y = 200 

Figure 8 looks quite similar as Figure 7 as they almost have the same pattern, we could hence 
draw a same conclusion: D tends to classify a dataset to be sensitive when it has one 
observation with extremely big value, and S tend to classify a dataset to be sensitive when it 
has two observations with big values.  

3.2.5 Pairwise comparison of P and D 
We repeat the above procedure once again to compare P and D, and the results are as 
following: 

Table 8 The distribution of the sensitive datasets classified by P and D 

  Dà  Sensitive D à  Safe Total 
P à  sensitive 177 22 199 

P à  safe 19 782 801 
Total 196 804 1000 

 

There are 177 datasets that are classified to be sensitive by both rules. Only 22 datasets are 
classified as sensitive by P but not by D and only 19 datasets are classified as sensitive by D 
but not by P. Unlike the comparison between P and S, these two rules are equivalent at most 
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of the times, in total, there are only 41 datasets that are classified differently. The kappa 
coefficient is calculated to be 0.81, indicating a substantial agreement between these two rules.  

Repeat the same procedure when comparing P and S, construct two matrices G and H, where 
G contains all the datasets that are classified as sensitive by D but safe by P, and H contains 
all the datasets that are classified as sensitive by P but safe by D. Afterwards, plot these 
datasets for G and H respectively in Figure 9:  

 

Figure 9 Plot of 𝑥!, 𝑥!, 𝑥! and 𝑥! for all datasets in G and H, when x is generated from 
exponential distribution with λ=1,number of observations n = 4, and the number of sensitive 
datasets y = 200 

Even though there are only a few datasets that are classified differently by P and D, the 
pattern is quite obvious. P tend to classify a dataset to be sensitive when it has one 
observation with extremely big value, and D tend to classify a dataset to be sensitive when it 
has two observations with big values.  
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4. Discussion 
There are many discussions in the previous literature regarding which rule is more 
conservative, i.e. which rule classifies more cells to be sensitive. However, as we have 
discussed in the former sections: no rule is more conservative than the other, and simply by 
changing the value of the parameters from 0 to 100, each rule can be adjusted equally 
conservative so that it can classify the cells as sensitive to a certain amount.  

Instead of focusing on distinguish which rule is more conservative, we put more emphasis on 
how the data looks like and what distribution it has. That is why we attempt to detect when 
the different rules classify a cell to be sensitive rather than how often they classify cells to be 
sensitive in this thesis. 

The most important conclusion is that the p% rule tends to classify a dataset to be sensitive 
when it has one observation with extremely big value, and S tends to classify a dataset to be 
sensitive when it has two observations with big values. Recall the typical cases when 
comparing the p% rule and the Statisticon rule in Table 5:  

Table 5 Typical cases for group A (sensitive by P but safe by S) and B (safe by P but sensitive 
by S) 

 Typical case 

A (sensitive by P but safe by S) 𝑥! =   0.69, 𝑥! =   0.23, 𝑥! =   0.06, 𝑥! = 0.02 
B (safe by P but sensitive by S) 𝑥! =   0.45, 𝑥! =   0.38, 𝑥! =   0.12, 𝑥! = 0.05 

 

Dataset (0.69, 0.23, 0.06 and 0.02) is classified as sensitive by the p% rule, recall the 
formulation of P, a cell is considered as sensitive if X –  𝑥!  –  𝑥! < p/100 * 𝑥!, that is 1 –  0.69  –
0.23 ＝ 0.08 < 18/100 * 0.69 = 0.12, so this dataset is sensitive according to the P% rule, this 
is because 0.69 is very close to the upper boundary of  𝑥!, where 𝑥1 = X –   𝑥!   = 0.77. This 
corresponds to the problem with the p% rule that we have discussed in chapter 2.4.5. If the 
value of   𝑥! in this dataset is not 0.69 but 0.59, while the dataset sum remains 1 (so   𝑥! +   𝑥! 
would gain 0.1), the dataset is no more sensitive by the p% rule: 1 – 0.59 – 0.23 ＝ 0.18  ≮ 
18/100 * 0.59 = 0.11. However, the information that   𝑥!  knows has not changed at all, why 
does it matter if   𝑥! is 0.69 or 0.59? One possible explanation is that some times, it might be 
more dangerous when true value of  𝑥! is closer to the upper boundary of the estimated 𝑥1 that 
  𝑥!  can assume. When does this situation occur should be determined by the more 
experienced statisticians or experts in NSIs and the specific area where the data comes from. 
The Dominance rule and the P% rule are quite similar in this respect.  

Nevertheless, the Statisticon rule is more general, as it classifies this dataset as safe because 
the interval of   𝑥! calculated by   𝑥! is (0.23, 0.77) which is quite wide. The Statisticon rule 
does not only take the situation when true value of  𝑥! is closer to the upper boundary of the 
estimated 𝑥1 that   𝑥! can assume into consideration, but also the interval of   𝑥! that   𝑥! could 
calculate. If there is no strong reason to believe that it is more dangerous when true value 
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of  𝑥! is closer to the upper boundary of the estimated 𝑥1 that   𝑥! can assume, the Statisticon 
rule is more preferred than the Dominance rule and the P% rule.  
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Appendix I Pairwise comparison between rules, when x~exp (λ=1) and n=6 
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Appendix II Pairwise comparison when x~exp (λ=1) and n=10 
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Appendix III Pairwise comparison when x~exp (λ=1) and n=20 
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Appendix IV Contour plot when x~N (100,50) 
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Appendix V Pairwise comparison when x~N (100,50) and n=4 
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Appendix VI Pairwise comparison when x~N (100,50) and n=6 
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