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Abstract 

This thesis addresses the issue of interval estimation of large proportions based on a 
stratified random sample. Interval estimation for large (or small) proportions can be 
problematic when the standard Wald interval is used. As an alternative to the Wald interval 
a modified version of a stratified score interval based on a method proposed by Yan and Su 
(2010) will be presented. The alternative stratified score interval is evaluated through 
simulations and then applied on the ICT usage in Swedish enterprises survey. The alternative 
stratified score interval performs better than the standard Wald interval in terms of 
coverage and can also handle the situation when the estimated proportions are exactly one 
unlike the standard Wald interval. For interval estimation of proportions in the ICT usage in 
Swedish enterprises the stratified score interval appears to be a possible alternative method.  
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1. Introduction 

Interval estimation for a single population proportion p is a popular and well documented 

subject in statistics. The classic large sample approximate interval, or the Wald interval, is 

under constant fire and criticized for being inadequate and have poor coverage probability in 

general and especially for proportions near 0 and 1. As poor coverage was not enough the 

confidence interval can stretch outside the boundaries [0, 1]. In the case of proportions at 

exactly zero or one the result is a zero width interval. Compared to most of the alternative 

methods for confidence interval around a proportion the Wald interval is however simple 

and versatile.  

A confidence Interval procedure for a weighted sum of proportions, like in a stratified 

sample is not as straightforward. Moving from a single proportion to a weighted sum of 

proportions seems to decrease the alternative methods in the same way as the coverage 

probability drops for the Wald interval approaching [0, 1]. In a setting with a finite 

population things get somewhat more complicated and the available methods are sparse. 

The Information and Communication Technology (ICT) usage in Swedish enterprises is a 

survey conducted by Statistic Sweden on behalf of Eurostat. The survey aims to investigate 

the usage of information technology in Swedish enterprises. The survey mainly consists of 

yes and no questions and hence shares of certain attributes are the unit of measurement. 

The ICT usage in Swedish enterprises is a stratified random sample and the proportions to be 

estimated comprises of several different stratums. The proportion of interest here is the 

share of enterprises that use computers. As suspected the estimated proportions get very 

high. The estimated shares of enterprises that use computers reach a hundred percent in 

most stratums. Interval estimation in this setting becomes problematic if the standard Wald 

interval is used. The result is many zero width intervals, intervals that exceed one and poor 

coverage. Since 2014 the question has actually been dropped from the survey but there are 

several questions rendering high estimates. Since it´s not likely that the use of information 

technology is going to decrease, the problem of interval estimation of large proportions will 

be a future issue in the ICT usage in enterprises. The study aims to investigate the possibility 

of an alternative procedure for interval estimation for a weighted sum of large proportions 

that performs better than the standard Wald procedure.  

The strategy here is to use an approach for interval estimation for a weighted sum of 

proportions proposed by Yan and Su (2010). The authors propose an interval based on 

inverting the score test, Wilson (1927). A modified version of their method taking the finite 

population in account will be applied to the ICT usage of enterprises 2013. This approach 

assumes that the proportions are in fact equal. A strong assumption that certainly not is 

possible to make in many situations. In this case there is at least some justification for this 

approach since the proportions are extreme in the majority of stratums. The method might 
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not be applicable in general, that is for all combinations of aggregated proportions across 

stratums in the survey. Only two sided confidence intervals are considered.  

The outline of the thesis is the following 

In section 2 some of the many alternative methods of constructing confidence intervals for a 

single proportion are presented and their respective performance will be discussed based on 

previous knowledge.  The standard Wald interval and the score interval will be given some 

extra attention since these are the methods considered when moving from the single 

parameter case to the multi-parameter case. In connection to this the evaluation criteria’s 

for the performance of a confidence interval is discussed.  

In section 3 the ICT survey will be examined in more detail. Some of the findings regarding 

the usage of computers in Swedish enterprises 2013 will be presented. The Notation for 

stratified random sampling without replacement will also be introduced in this section along 

with the estimation procedures used in the survey for the stratified proportions.  

In section 4 some of the previous research for interval estimation of a weighted sum of 

proportions is briefly described. The modified version of the stratified score interval   

proposed by Yan and Su (2010) that take the finite population in account is described in 

more detail in this section. The modified stratified score interval will be assessed through 

simulations that focus on large proportions. The true proportions are assumed to be equal.  

In section 5 the method is applied on the ICT usage in Swedish enterprises. The confidence 

intervals for the standard Wald interval, that is currently used for interval estimation in the 

survey, and the stratified score interval are calculated and compared for a sample of the 

aggregated proportions estimated in the survey.   

Finally in section 6 the conclusions will be presented along with some suggestions on further 

development of a method proposed by Yan and Su (2010) used for the situation when the 

proportions cannot be assumed to be equal.  

The figures, simulations and calculation of confidence intervals are done in R.  The r code is 

found in the appendix.  
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2. Confidence intervals for a single proportion 

In the following section some of the most common alternative confidence intervals for a 

proportion will be briefly described. Some extra attention will be given to the Wilson (1927) 

score interval and the standard Wald interval. There are no shortages of alternative methods 

for constructing confidence intervals for proportions. There exist a number of comparative 

studies that investigates the performance of the Wald interval and alternative intervals. For 

example Brown, Cai and DasGupta (2001), Agresti and Coull (1998) and Newcombe (1998a). 

More or less all of the alternative procedures can be said to perform better than the 

standard Wald interval in terms of coverage and some of them do not have the problem of 

boundaries exceeding 1 or going below 0 or zero width intervals when p =[ 0, 1].  

There are several ways to evaluate a confidence procedure. The most common would be 

coverage probability and length. The following definitions of coverage and length are only of 

interest in this section when discussing the performance of confidence intervals for a single 

binomial parameter. In the stratified case the evaluation is based on random generated 

intervals.  

The width of an interval is often measured as expected length. The expected length, 

𝐸𝑛,𝑝(𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝐼)) , is expressed as, 

∑ (𝑈(𝑥, 𝑛) − 𝐿(𝑥, 𝑛))𝑛
𝑥=0 (𝑛

𝑥
)𝑝𝑥(1 − 𝑝)𝑛−𝑥     (2.1) 

(Brown,Cai and DasGupta, 2001) 

Only nonrandomized intervals are considered in the single parameter case. The coverage 

probability, 𝑃𝑝(𝑝 ∈ 𝐶𝐼) is therefore defined as, 

𝐶(𝑝, 𝑛) = ∑ 𝐼(𝑥, 𝑝)𝑛
𝑥=0 (𝑛

𝑥
)𝑝𝑥(1 − 𝑝)𝑛−𝑥, 0 < 𝑝 < 1,    (2.2) 

(Feng, 2006) 

If the interval contains p when X=x then 𝐼(𝑥, 𝑝) = 1 and otherwise 0, Agresti and Coull (1998). 

Since the binomial distribution is discrete, an exact nominal confidence level 1-α is not 

possible to attain (Newcombe, 1998a). The coverage probability will vary depending on the 

parameter value. There are two alternatives, approximate and exact intervals, to choose 

from depending on how strict level of coverage is desired. An exact method, like the 

Clopper-Pearson interval, guarantees that the coverage probability is at least at nominal 

level and should be preferred if a minimum level of 1-α is wanted. If the nominal 1-α level is 

taken as an average then an approximate interval would suffice. An interval that is easy to 

implement in practice may also be of importance and approximate intervals are often easier 

to calculate.  
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All the methods described in this chapter concerns confidence intervals around a single 
proportion. The methods are strictly only applicable if a simple random sample is taken. The 
observations are assumed to be iid, independently and identically distributed.  
If X1,……, Xn are IID Bernoulli random variables then  𝑋 = ∑ 𝑥𝑖  follows a binomial 
distribution with parameters n and p. The maximum likelihood estimator for p is given by 
𝑝̂ = ∑ 𝑥𝑖 /𝑛, where xi = 1 (Casella and Berger,2002).  
 
 
2.2 Wald and score intervals 

The most frequently used confidence interval for a proportion is the Wald interval based on 
the normal approximation. The interval is obtained by inverting a general large sample 
normal test, or the Wald test. The Wald test is based on a statistic of the following form 
(Casella and Berger, 2002) 
 

𝜃 − 𝜃/𝑠𝑒̂(𝜃)      (2.3) 
 

Where 𝜃 is the maximum likelihood estimate of 𝜃 and 𝑠𝑒̂(𝜃) is the estimated standard error.  

 
Then by the central limit theorem, if the sample size n, is sufficiently large, the estimator of 
the proportion, 𝑝̂, is approximately normally distributed with mean 𝑝  and variance 
𝑣𝑎𝑟(𝑝̂) = 𝑝(1 − 𝑝)/𝑛 (Casella and Berger, 2002). 
 
This means that for p, 0 < p < 1 
 

 
𝑝−𝑝

√𝑝(1−𝑝̂)/𝑛
→ 𝑛(0,1)      (2.4) 

 
A 100(1 - α/2) % standard Wald confidence interval is thus given by, 

𝑝̂ ± 𝑧𝛼/2√
𝑝(1−𝑝)

𝑛
      (2.5) 

Where 𝑧𝛼/2 is the critical region from a standard normal distribution and 𝑝̂ = ∑ 𝑥𝑖 /𝑛 . 

The score interval was first introduced by Wilson (1927) and in literature it is sometimes 
referred to as the Wilson score interval (Brown et al, 2001). Here it will simply be called the 
score interval. The score interval is just as the standard Wald an approximate interval and is 
given by an inversion of the score test for p see Casella and Berger (2002, p.495). The 
difference between the Wald and the score test is that the former is based on the estimated 
standard error and the latter is based on the null standard error (Brown et al, 2001). The 
confidence interval is obtained by inverting the test in (2.3), replacing the estimated 
standard error with the true standard error.  
 

𝑝−𝑝

√𝑝(1−𝑝)/𝑛
→ 𝑛(0,1)      (2.6) 

For p, 0 < p < 1, 
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After inverting the score test for p, |
𝑝−𝑝

√𝑝(1−𝑃) 𝑛⁄
| ≤ 𝑧𝛼/2,  the following quadratic equation 

must be solved for p in order to obtain an expression for the score interval.  

(𝑝̂ − 𝑝)2 = 𝑧2
𝛼 2⁄

𝑝(1−𝑝)

𝑛
      (2.7) 

Expressed in a another form the above equation becomes 

(1 +
𝑧𝛼/2

2

𝑛
) 𝑝2 − (2𝑝̂ +

𝑧𝛼 2⁄
2

𝑛
) 𝑝 + 𝑝̂2 = 0    (2.8) 

Solving the equation by using the quadratic formula, 

𝑝 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 , where a = (1 +

𝑧𝛼/2
2

𝑛
), 𝑏 = − (2𝑝̂ +

𝑧𝛼 2⁄
2

𝑛
) and 𝑐 = 𝑝̂2 (2.9) 

the lower and upper bounds are given by, 

 

𝐿 =
𝑝̂+𝑧𝛼 2⁄   

2 /2𝑛

1+𝑧𝛼 2⁄   
2 /𝑛

−
𝑧𝛼 2⁄

1+𝑧𝛼 2⁄   
2 /𝑛

√𝑝̂(1−𝑝̂)

𝑛
+

𝑧𝛼 2⁄
2

4𝑛2
    (2.10) 

𝑈 =
𝑝̂+𝑧𝛼 2⁄   

2 /2𝑛

1+𝑧𝛼 2⁄   
2 /𝑛

+
𝑧𝛼 2⁄

1+𝑧𝛼 2⁄   
2 /𝑛

√𝑝̂(1−𝑝̂)

𝑛
+

𝑧𝛼 2⁄
2

4𝑛2
   (2.11) 

where 𝑧1−𝛼 2⁄  is the 1 − 𝛼 2⁄  percentile of the standard normal distribution and 𝑝̂ =
∑ 𝑥𝑖

𝑛
. 

Brown, Cai and DasGupta (2001) do quite a thorough study on the subject and compare the 

performance of the Wald interval and some alternative methods, including the score 

interval. Most likely one of the most cited papers regarding alternative confidence intervals 

for proportions. The score interval is recognized as an interval with good properties that 

works well for most situations, that is, for nearly all sample sizes and values of p (Agresti and 

Coull ,1998). Both Agresti and Coull (1998) and Brown, Cai and DasGupta (2001) recommend 

the score interval for practical use. Brown, Cai and DasGupta (2001) propose the score 

interval specially for small n, below 40. They do not express the same enthusiasm for the 

Wald interval which they refer to as “persistently chaotic” among other things and never 

recommend it to be used, (Brown, Cai and DasGupta , 2001).   

The coverage probability of the score interval is more or less always close to the nominal 

level, even for small n and proportions near 0 or 1 (Agresti and Coull, 1998). In figure 1 the 

coverage probability for the standard Wald interval and the score interval are plotted for a 

fixed n = 10 and 100. The nominal level is set to 95%. As can be seen from figure 1 the 

coverage probability, the y-axis, of the Wald interval has much more serious drops in 

coverage when n equals 10 than compared to the score interval. The coverage of the score 

interval fluctuates around the 95 % and rarely goes below 90 % coverage. The coverage for 
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the Wald interval gets really poor when p is about 0.8 and 0.2. A larger sample size improves 

the coverage for both the Wald and the score as expected but the Wald interval still has 

rather poor coverage even when n equals 100, for p close to 0 and 1.  

 

 

Figure 1. Coverage probability of Wald and score intervals for n=10 and 100.  

However the coverage probability for the score interval has two serious drops for some 

values of P very close to 0 or 1.  This can be seen in the figure 2, where p is plotted as a 

sequence only for values close to 1. These drops in coverage probability will never disappear. 

They will however get closer to 0 and one as the sample size increases. For some p close to 0 

and 1 the minimum coverage will be 0.835 for a 95% confidence interval (Agresti and Coull, 

1998). They showed that for instance if n = 10 there is a minimum coverage of 83.5 % at p = 

0.982 and p = 0.018. Taking the whole parameter space in consideration the region where 

this drop occurs is quite small (Agresti and Coull,1998). The coverage for the Wald interval 
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for the same regions is very poor. The serious drop in coverage starts somewhere when p is 

about 0.96-0.98 when n=100.  

 

 

 

Figure 2. Coverage probability of Wald and score intervals for n=10 and 100 for values of p from 0.9 to 1. In the 
figure in the lower right corner p ranges from 0.985 to 1. 

 

One important feature of the score interval is the fact that it never results in a zero width 

interval when the estimated proportion is 0 or 1. A necessity in this case since the data is 

somewhat extreme in the ICT usage in enterprises survey. In figure 3 and 4 the standard 

error for the Wald interval and the term that affects the length of the score interval are 

plotted over a sequence of p for n=10 and 100. The standard error for the Wald interval is 
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√𝑝̂(1 − 𝑝̂ 𝑛⁄  and the term for the score is √
𝑝(1−𝑝)

𝑛
+

𝑧1−𝛼 2⁄
2

4𝑛2 /(1 + 𝑧𝛼 2⁄   
2 /𝑛). The term in the 

score interval never converges to zero for extreme values of p. The second term in the 

square root ensures that a zero width interval never occurs.  

 

 

 

Figure 3. Standard error for the Wald interval and the term that affects the length of the score interval plotted 
over a sequence of p for n=10. 

The difference between the curves will be lower when the sample size gets larger but the 

standard error for the Wald interval always converges to zero no matter the sample size and 

hence the result is a zero width interval for proportions at exactly 0 or 1.  
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Figure 4. Standard error for the Wald interval and the term that affects the length of the score interval plotted 
over a sequence of p for n=100. 

Unlike the Wald interval the score interval is symmetric around the midpoint, 
𝑝̂+𝑧1−𝛼 2⁄   

2 /2𝑛

1+𝑧1−𝛼 2⁄   
2 /𝑛

. 

This is a weighted average which falls between 𝑝̂ and 0.5. This will shift the interval closer to 

0.5. The effect is less when n increases (Agresti and Coull,1998). The score interval is only 

symmetric around 𝑝̂ when it is exactly 0.5. The level of asymmetry will not be measured 

here. The only intervals that are compared and evaluated are the Wald and the score 

interval. One is symmetric around 𝑝̂ and the other one is not. It is the asymmetry that makes 

the score interval a good candidate for estimation of proportions close or at [0, 1]. The Wald 

intervals poor performance when 𝑝̂ is near the limits of 0 and 1 is because it is always 

symmetric around 𝑝̂ and ignoring that the binomial distribution is skewed (Agresti and Coull, 

1998).  

The score interval has in general better coverage than the Wald interval but is not necessary 

wider. If 𝑝̂ lies within 0.15 and 0.85 the score interval is narrower than the Wald interval for 

any n and any confidence level (Agresti and Coull, 1998).   

A continuity correction could be incorporated in both the Wald and score interval. For closed 

form expressions of the lower and upper limits for the score interval, see Newcombe 

(1998a). Incorporating a continuity correction will make the score interval similar to that of a 

conservative. In other words, the coverage probability will be above the nominal level. A 

Wald interval with continuity correction will improve the coverage but will lead to more 

instances of overshoot for p close to [0, 1].  
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Besides the unfortunate decrease in coverage probability for some p in the vicinity of zero 

and 1 the score interval has good properties compared to the Wald interval. In the case with 

a single parameter the choice between the Wald and the score interval is obvious for 

parameters close to the limits [0, 1]. It is also an interval that is fairly easy to calculate 

because closed form expression exists for the lower and upper limits. If a strict 1-α nominal 

level is needed other methods must be considered.  

2.3 Adjusted Wald interval 

As the name implies the interval is based on the Wald interval and has the similar well-

known form. It’s also sometimes referred to as the Agresti – Coull interval due to its first 

appearance in Agresti and Coull (1998). The method consists of adding to successes and two 

failures and then uses the same formula for constructing the confidence interval as for the 

standard Wald interval. The point estimate, 𝑝̂ = 𝑥 𝑛⁄ , then becomes 𝑝 = (𝑥 + 2) (𝑛 + 4)⁄ .  

The adjusted Wald confidence interval is defined as 

𝑝 =  ±1.96√
𝑝̃(1−𝑝̃)

𝑛+4
      (2.12) 

(Agresti and Coull, 1998) 

The midpoint of the adjusted Wald interval resembles the midpoint of the Wilson interval. 

The midpoint of the Wilson interval (𝑥 + 𝑧2 2⁄ ) (𝑛 + 𝑧2)⁄ ≈ (𝑥 + 2) (𝑛 + 4)⁄  when z2 = 

1.962 (Agresti and Coull,1998). The intervals are centered on nearly the same value when the 

confidence level is 95%. Figure 5 shows the coverage probability when n=10. The coverage 

probability is rather good. In fact it´s has better coverage than the Wilson interval and is 

slightly more conservative (Agresti and Coull, 1998). Brown, Cai and DasGupta(2001) 

recommended the adjusted Wald interval for n ≥ 40 due to its simple form and good 

performance in general. They also recognize that it behaves well for small n as did Agresti 

and Coull (1998). One of the drawbacks of the method is that the interval can stretch below 

0 and above 1, just like the standard Wald. Despite its good coverage probabilities and 

simple form it’s not be the best choice for very small or very large proportions.  
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Figure 5. Coverage probability of Agresti and Coull interval for n=10. 

 

2.4 Transformation methods 

The logit interval and the arcsin interval are two variance stabilizing transformations for the 

binomial distribution commonly used (Feng, 2006).  

A 100(1-α)% confidence logit interval is obtained by first letting,  𝜆̂ = 𝑙𝑜𝑔 (
𝑝

1−𝑝
)  

It can then be shown by the delta method that  (𝜆̂ −  𝜆)/√𝑉̂(𝜆̂)  →  𝑁(0.1) 

where  𝑉̂(𝜆̂) =  1 (⁄ 𝑛𝑝̂(1 − 𝑝̂) ,  

The endpoints of the interval are  

𝐿 =
𝑒𝜆̂𝐿

1+𝑒𝜆̂𝐿
 , where 𝜆̂𝐿 = 𝜆̂ − 𝑧𝛼/2√𝑉̂(𝜆̂)     (2.12) 
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𝑈 =
𝑒𝜆̂𝑈

1+𝑒𝜆̂𝑈
 , where 𝜆̂𝑈 = 𝜆̂ + 𝑧𝛼/2√𝑉̂(𝜆̂)    (2.13) 

(Liu and Kott, 2007) 
 

The interval tends to be quite long and performance, in terms of coverage probability, is 

poor when p is close to 0 or 1 (Brown et al, 2001).  

The arcsin interval is obtained in a similar fashion. Let 𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛√𝑝̂,  

and again by the delta method it can be shown that  (𝛿 −  𝛿)/√𝑉̂(𝛿̂)  →  𝑁(0.1) 

 where  𝑉̂(𝛿̂) =  1 4𝑛⁄  
The upper and lower limits are given by  
 

𝐿 = 𝑠𝑖𝑛2[𝑎𝑟𝑐𝑠𝑖𝑛2 − 𝑧𝛼/2/2√𝑛]     (2.14) 

 

𝑈 = 𝑠𝑖𝑛2[𝑎𝑟𝑐𝑠𝑖𝑛2 + 𝑧𝛼/2/2√𝑛]    (2.15) 

 
(Liu and Kott, 2007) 
 
For proportions close to 0 and 1 the coverage probability drops considerably however the 
interval performs adequate when p is distant from the limits (Brown et.al, 2001).  
 
 
2.5 Binomial likelihood ratio interval, (LRT) 

The Binomial likelihood ratio interval is formed by inverting the likelihood ratio statistic. An 

approximate 1-α likelihood interval for a proportion is then given by  

𝑝: −2𝑙𝑜𝑔 (
𝑝𝑦(1−𝑝)𝑛−𝑦

𝑝𝑦(1−𝑝̂)𝑛−𝑦
) ≤ 𝜒1,𝛼

2          (2.16) 

where 𝑦 = ∑ 𝑥𝑖
𝑛
𝑖=1   

(Casella and Berger, 2002) 

This is perhaps one of the most common methods of constructing confidence interval but it 

is more difficult to calculate than some other approximate intervals like the Wald or score 

interval (Brown et al, 2001). Casella and Berger (2002) compare the performance of the 

likelihood ratio interval with the Wald and Wilson´s score interval. They found that the 

length of the approximate LRT interval was the shortest and Wilson´s score interval the 

longest at least for small n. For small n the coverage probability of the LRT interval was 

found to be inadequate. It should be noted that they compared the LRT method with a 

continuity corrected score interval which has coverage probability above nominal level, 

similar to a conservative interval.  
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2.6 The Clopper-Pearson interval 

The exact or conservative method for calculating a confidence interval for a binomial 

parameter is often represented by the Clopper-Pearson interval. The Clopper-Pearson 

method is the standard and most common way of obtaining an interval if one prefers to 

avoid an approximation (Agresti and Coull, 1998). The interval is constructed by inverting the 

equal-tailed binomial tests of 𝐻0: 𝑝 = 𝑝0 against the alternative hypothesis of 𝐻1: 𝑝 ≠ 𝑝0.  

To get the endpoints of the Clopper-Pearson interval the solutions to the following 

equations are calculated.  

∑ (𝑛
𝑘

)p0
k(1 − 𝑝0)𝑛−𝑘 = α 2⁄

𝑛

𝑘=𝑥
     (2.17) 

and 

∑ (𝑛
𝑘

)p0
k(1 − 𝑝0)𝑛−𝑘 = α 2⁄

𝑥

𝑘=0
    (2.18) 

When  𝑥 = 1,2 … , 𝑛 − 1 , the Clopper-Pearson interval can be expressed as 

 

[1 +
𝑛−𝑥+1

𝑥𝐹2𝑥,(𝑛−𝑥+1),1−𝛼 2⁄
]

−1

< 𝑝 < [1 +
𝑛−𝑥

𝑥𝐹2(𝑥+1),2(𝑛−𝑥),𝛼 2⁄
]

−1

  (2.19) 

 

Fa,b,c  is the1-c quantile from the F distribution with a and b degrees of freedom (Agresti and 

Coull, 1998).  

The lower endpoint in the interval above is the α/2 quantile of a beta distribution with 

parameters x and n-x+1. The upper endpoint then is a 1- α/2 quantile of a beta distribution 

with parameters x+1 and n-x. In the situation when x = 0 the lower bound will be 0 and if x = 

n the upper bound will be 1 (Agresti and Coull, 1998). The nominal level of this interval is 

guaranteed to be at least 1- α. However the nominal level is not exactly 1- α. The actual 

coverage probability is in fact always larger than the nominal confidence level and quite a lot 

when n is small.  

Figure 6 shows the coverage probabilities for the Clopper - Pearson interval for fixed n =(10, 

25, 50 and 100) and different p. When n gets larger the coverage probabilities gets closer to 

the nominal level. Because of the unnecessary long intervals that the Clopper-Pearson 

method inevitably produces, unless n is quite large, it is not recommended for practical use 

(Agresti and Coull, 1998, Brown et al, 2001). The Clopper-Pearson interval is symmetrical 

around 𝑝̂ which the approximations previously discussed aren´t, except for the Wald 

interval. It is not exactly symmetrical though. The error probabilities in each tail cannot be 

precisely 2.5 % (Reizigel, 2003). It should be mentioned that there are other exact methods if 
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a confidence level that is equal or larger than 1- α is demanded, like the Stern interval for 

example (Casella, 1986).  

 

 

Figure 6.Coverage probability for the Clopper–Pearson interval for n = 10, 25, 50 and 100. 

 

2.7 Jeffreys interval  

As an alternative to the frequentist methods one could tackle this problem with a Bayesian 

approach. A natural prior for the binomial parameter p is the beta distribution. If 

𝑋~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) and 𝑝~𝐵𝑒𝑡𝑎(𝑎, 𝑏) the posterior distribution of p is 𝐵𝑒𝑡𝑎(𝑋 + 𝑎, 𝑛 −

𝑋 + 𝑏), (Feng, 2006).   

The non-informative Jeffreys prior is 𝐵𝑒𝑡𝑎(1 2, 1 2⁄⁄ ).  
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The lower and upper bound for the Jeffreys prior 100(1-α) % equally tailed interval is given 

by 

 
𝐿𝐽(𝑥) = 𝐵(𝛼 2;⁄ 𝑋 + 1 2⁄ , 𝑛 − 𝑋 + 1 2⁄ )    (2.20) 

𝑈𝐽(𝑥) = 𝐵(𝛼 2;⁄ 𝑋 + 1 2⁄ , 𝑛 − 𝑋 + 1 2⁄ )    (2.21) 

When x= 0 or n the lower and upper endpoints must be modified to avoid a zero coverage 

probability when P goes to 0 or 1 (Brown, Cai and Dasgupta, 2001).  

 

3. ICT usage in Swedish enterprises  

The ICT usage in Swedish enterprises is a survey that aims to investigate the usage of 
information technology in Swedish enterprises. More specifically questions about access to 
computers and networks, usage of IT systems and internet and e commerce are asked. The 
survey was from the beginning a joint Nordic project that started in 1999. In 2001 Eurostat 
developed the model in order to make a consistent survey in Europe. From 2006 and on the 
survey, ICT usage in enterprises, is regulated by the European Union and the survey are now 
conducted on behalf of Eurostat (ICT usage in enterprises, 2013). The survey has been 
conducted yearly since 2001.   
 
The ICT usage in enterprises is stratified random sample with optimal allocation. The 
sampling frame is stratified after industry and size of enterprise, measured as number of 
employees. For enterprises with more than 250 employees all units are sampled. All units 
have also been sampled if a stratum consists of 7 units or less. At least 7 units are sampled if 
there are more than 7 units in the stratum. For the rest of the enterprises with 10-249 
employees a stratified random sample with Neyman allocation is conducted. Both number of 
enterprises in the stratum and turnover is used for allocation. This will result in two different 
alternative sample sizes. The alternative that gives the largest sample size is used (ICT usage 
in enterprises, 2013).  
 
The data for the survey is collected through both internet-based and mailed questionnaires 
(ICT usage in enterprises, 2013). In 2103 the unit non-response was about 19%. The unit 
non-response rates for type of industry are about 18 percent for most classes. 
Accommodation and food service activities stand out with the highest non-response rate at 
33 percent. Enterprises with 10-49 tend to be less inclined to answer than large enterprises, 
with non-response rates of 22 and 15 percent respectively (ICT usage in enterprises, 2013).  
 
The total population in the survey, 2013, consists of 34465 enterprises and the total sample 
size is 3419. The observations are distributed across 212 stratums. As already mentioned the 
estimated proportions are very large for nearly all industry classes and sizes. Most of them 
are equal to one, roughly about 70 percent. The remaining proportions are usually above 
0.9.     
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Further the number of sampled units in each stratum varies a lot. This is also true for the 
strata sizes. The smallest stratum size in the survey is in fact one and there are several strata 
that consist only of a few units. Since all units are sampled when the total strata size is seven 
or less and likewise when an enterprise has more than 250 employees the result are many 
total selections. The amount of strata where all units are sampled will decrease some due to 
non-response but the quantity of total selections is still large. About 80 percent of the strata 
have sample sizes relative to stratum size around 10 percent and above and in 20 percent of 
the strata the sampling fraction is below 10 percent. 
 
Ignoring the finite population and assume that the data follow a binomial distribution in 
every strata may not be reasonable in this case. Assuming an infinite population would have 
made the calculation of a confidence interval for this data slightly less complicated. Ignoring 
the finite population will probably result in wider confidence intervals and hence more 
uncertainty about the true proportion.  The data cannot be presented in full here due to 
confidentiality reasons. 
 
3.2 Results, ICT usage in Swedish enterprises 2013 
 
Some of the findings related to question of interest, will be summarized in short in the 
following section. Only a part of the results from the 2103 survey will be reported here. 
Many questions in the survey will result in quite large proportions but only the question of 
usage of computers will be addressed here. See, SCB, ICT usage in Swedish enterprises 2013, 
for more information of the survey 2013.  
 
 
The proportions of enterprises that use computers have since the beginning of the survey 
been high. It has also been more or less been constant over time. The smaller enterprises, 1 
to 9 employees, show a similar pattern. These enterprises were investigated for the first 
time in 2008, (ICT usage in Swedish enterprises 2013).  
 

The results are reported broken down after industry and size of enterprise. The figures in 
table 1 display the proportion of enterprises by industry for 10 employees or more that use 
computers. The proportions of computer usage for the different industry classes are ranging 
from 94-100 percent.  Accommodation and food service activities have the lowest usage and 
Electricity and waste management and the It sector have the highest usage with 100 
percent. 
 
  
Table 1. Use computers, share of enterprises by industry, 2013, for 10 employees or more.  

 

 Proportion % 
 

Confidence interval 

Total 98 ± 1 

Manufacturing  99 ± 1 

Electricity  and waste management 100 ± 0 

Construction 97 ± 3 

Wholesale and retail trade; repair of motor vehicles 99 ± 1 
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and motorcycles  
Transportation and storage  99 ± 2 

Accommodation and food service activities  94 ± 4 

Information and communication  99 ± 0 

Financial and insurance activities  98 ± 1 

Real estate activities  97 ± 3 

Other service activities  98 ± 1 

It-sector 100 ± 0 

 

Source: Statistic Sweden, ICT usage in enterprises 2013 

 

In table 2 the proportions of computer usage divided after size of enterprises, measured by 

number of employees, shows that enterprises with a small number of employees to a less 

extent use computers than large enterprises. The proportions are ranging from 90-99.  

Table 2. Use computers, share of enterprises by size, 2013, 1 employee or more. 

 

Number of employees Proportion % 
 

Confidence interval 

Total, 1-9 employees  91 ± 2 

1-4  employees 90 ± 3 

5-9  employees 96 ± 4 
   

   

10-49 employees 98 ± 1 

50-249 employees 99 ± 1 

250 or more employees 99 ± 1 

Source: Statistics Sweden, ICT usage in enterprises 2013 

 
3.3 Stratified random sampling 
 
The ICT survey is a stratified random sample. A simple random sample without replacement 
is taken in each stratum. The notations for a stratified random sample are as follows. 
 
The population proportion is given by,   

𝑝𝑠𝑡𝑟 =
1

𝑁
∑ ∑ 𝑦ℎ𝑗

𝑁ℎ
𝑗=1

𝐻
ℎ=1       (3.1) 

(Lohr, 2010)     

Where 𝑦ℎ𝑗 = 1 if enterprise j use computers and 0 otherwise. N is the total population and Nh 

is the number of enterprises in stratum h. 

The estimate of the proportion is given by, 
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𝑝̂𝑠𝑡𝑟 = ∑
𝑁ℎ

𝑁

𝐻
ℎ=1 𝑝̂ℎ       (3.2) 

The aggregated proportions are a weighted average of the sample stratum averages and are 

multiplied by Nh/N (Lohr,2010), where 𝑝̂ℎ =  𝑦̅ℎ is the estimated proportion in stratum h.  

The variance in the population is estimated according to, 

𝑉̂(𝑝̂) =
1

𝑁2
∑

𝑁ℎ
2

𝑛ℎ

𝐻
ℎ=1 (1 −

𝑛ℎ

𝑁ℎ
) 𝑆̂ℎ

2                                                                                        (3.3) 

and the standard error,  𝑆̂ℎ
2 is given by, 

𝑆̂ℎ
2 =

𝑁ℎ

𝑁ℎ−1
𝑝̂ℎ(1 − 𝑝̂ℎ)     (3.4) 

(ICT usage in Swedish enterprises, 2013) 

 

If the number of strata is large enough or the sample sizes within each stratum is sufficiently 

large ( Lohr, 2010), a 95 % Wald confidence interval for the population proportion, 𝑝̂, is given 

by, 

𝑝̂𝑠𝑡𝑟 ± 𝑧𝛼/2√𝑉̂(𝑝̂)       (3.5) 

 

4. Confidence intervals for a sum of weighted proportions 

The methods presented in section two can be used to calculate a confidence interval for a 
proportion in a single stratum. For a sum of proportions obtained from a stratified random 
sample some adjustment of the methods is needed, not obvious how though. Quite a lot of 
attention has been given to the difference of proportions from independent binomial 
distributions and there are known procedures for these situations; see Newcombe (1998b) 
and Agresti and Caffo (2000). However confidence intervals for aggregated proportions seem 
to be much less investigated. Some of the previous efforts in this area are presented in the 
following section. 
 
Decrouez and Robinson (2012) evaluate confidence intervals for the sum of two weighted 
proportions based on inverting the Wald, score and the log likelihood ratio test. The score 
test based intervals performed best. Their proposed score interval relies on some heavy 
calculations though and the interval must be obtained numerically. Not an approach 
applicable for this problem.  
 
Hamada, Mitchell and Necker (2014) compare three different methods for constructing an 
upper confidence bound for small weighted proportions in a stratified random sample. 
Assuming that the number of events follow a hypergeometric distribution in each stratum 
they evaluate a Clopper-Pearson type interval based interval, a standard Wald interval and a 
Bayesan approach. The Clopper-Pearson based on the hypergemetric distribution generated 
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very conservative intervals since an adjustment for simultaneous intervals was needed. Their 
analysis is based on only three stratums and this method yielded intervals with 100 % 
coverage. The Wald interval and the Bayesan approach resulted in shorter intervals with 
coverage around 90 and 95 % respectively. For the Wald interval zero stratum variances was 
replaced by 0.1 to increase the length of the interval.  
 
The method proposed by Yan and Su (2010) for a sum of weighted independent proportions 

is perhaps the most interesting solution to the problem at hand. They propose a stratified 

score confidence interval. Instead of a single parameter we now have multiple independent 

parameters.  

The stratified proportion is now defined as, 

𝑝𝑠𝑡𝑟 = ∑ 𝑤ℎ𝑝ℎ
𝐻
ℎ=1 ,      (4.1) 

where wh are the stratum weights and h = 1,2,3…H are the strata.  

The estimate of the stratified proportion is,  

𝑝̂𝑠𝑡𝑟 = ∑ 𝑤ℎ𝑝̂ℎ
𝐻
ℎ=1        (4.2) 

 And finally the variance of the point estimate is given by 

 ∑ 𝑤ℎ
2𝑝̂ℎ

𝐻
ℎ=1 (1 − 𝑝̂) 𝑛ℎ⁄       (4.3) 

The score interval for the stratified proportion is quite similar to the score interval for a 

single proportion and can be solved in a similar fashion. The derivation of the score interval 

involves a solution of a quadratic expression as shown in section 2. However the expression 

for the variance of the point estimate cannot be expressed as a quadratic form of ∑ 𝑤ℎ𝑝ℎ
𝐻
ℎ=1  

unless all the proportions are equal. Recall that the expression for the standard error in the 

denominator in the score test is the null standard error, √∑
𝑤ℎ

2

𝑛ℎ

𝐻
ℎ=1  𝑝(1 − 𝑝). If the 

proportions are equal the roots of equation (4.4) gives the confidence bounds for p (Yan and 

Su ,2010).  

(∑ 𝑤ℎ
𝐻
ℎ=1 𝑝̂ℎ − 𝑝)2 =  𝑧1−𝛼/2

2 ∑
𝑤ℎ

2

𝑛ℎ

𝐻
ℎ=1  𝑝(1 − 𝑝)    (4.4) 

 

The roots of equation (4.4) are given by,  

 

(𝐿) =
∑ 𝑤ℎ𝑝ℎ+𝜆𝑍𝛼 2⁄

2𝐻
ℎ=1

1+𝜆𝑍𝛼 2⁄
2 −

𝑍1−𝛼 2⁄ √𝜆 ∑ 𝑤ℎ𝑝ℎ(1−∑ 𝑤ℎ𝑝ℎ)+
𝜆2

4
𝑍𝛼 2⁄

2𝐻
ℎ=1

𝐻
ℎ=1

1+𝜆𝑍𝛼 2⁄
2    (4.5) 
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(𝑈) =
∑ 𝑤ℎ𝑝ℎ+𝜆𝑍𝛼 2⁄

2𝐻
ℎ=1

1+𝜆𝑍𝛼 2⁄
2 +

𝑍1−𝛼 2⁄ √𝜆 ∑ 𝑤ℎ𝑝ℎ(1−∑ 𝑤ℎ𝑝ℎ)+
𝜆2

4
𝑍𝛼 2⁄

2𝐻
ℎ=1

𝐻
ℎ=1

1+𝜆𝑍𝛼 2⁄
2    (4.6) 

(Yan and Su, 2010) 

Where 𝜆 = ∑
𝑤ℎ

2

𝑛ℎ

𝐻
ℎ=1   and 𝑧1−𝛼/2 is the 1 − 𝛼/2 percentile of a standard normal distribution.  

The weights for the proportions in the different strata are as previously Nh/N, where Nh is 

the stratum size and N is the total population size. Yan and Su (2010) use different kind of 

weights based on variances but state that the stratified score interval are not dependent on 

any specific weights. A minimum requirement is that the weights are nonnegative and that 

they sum to 1 (Yan and Su, 2010). Since we in this case have a finite population and the 

stratum sizes are known the weights, Nh /N, is a natural choice and more in line with the 

survey. Using other weights the estimated proportions will be slightly different and hence a 

confidence interval would not be constructed around the same point estimate as in the 

survey. No other weights than Nh/N will be used in the analysis.   

A drawback of this method is naturally that we have to assume that the true proportions are 

in fact equal, p1 = p2, . . . ., pH. The assumption of equal proportions may not be feasible in 

many situations. For this particular data this assumption is not unrealistic. A common 

situation is several estimates equal to 1 and one or a few estimates above 0.9, often closer 

to 1 than 0.9. For some of the combinations of strata all the estimates are equal to 1.  

Presumably we can proceed in a similar fashion to find a score interval for a stratified 

proportion obtained from a finite sample by replacing the variance of the standard error for 

the sample parameter with the expression of the variance for the population parameter.  

By the central limit theorem,    

∑ 𝑤ℎ
𝑘
ℎ=1 𝑝ℎ−𝑝

 √(
𝑁ℎ
𝑁

)
2

(
1

𝑛ℎ
)(1−

𝑛ℎ
𝑁ℎ

)(
𝑁ℎ

𝑁ℎ−1
)𝑝(1−𝑝)

→ 𝑛(0,1)     (4.7) 

And the roots of equation (4.8) give the lower and upper bound of the score interval for the 

stratified proportion in a finite sample.  

(∑ 𝑤ℎ
𝐻
ℎ=1 𝑝̂ℎ − 𝑝)2 =  𝑧𝛼/2

2  𝛿𝑝(1 − 𝑝)    (4.8) 

 

The roots are explicitly given by, 
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(𝐿) =
∑ 𝑤ℎ𝑝ℎ+𝛿𝑍𝛼 2⁄

2𝐻
ℎ=1

1+𝛿𝑍𝛼 2⁄
2 −

𝑍1−𝛼 2⁄ √𝛿 ∑ 𝑤ℎ𝑝ℎ(1−∑ 𝑤ℎ𝑝ℎ)+
𝛿2

4
𝑍𝛼 2⁄

2𝐻
ℎ=1

𝐻
ℎ=1

1+𝛿𝑍𝛼 2⁄
2     (4.9) 

(𝑈) =
∑ 𝑤ℎ𝑝ℎ+𝛿𝑍𝛼 2⁄

2𝐻
ℎ=1

1+𝛿𝑍𝛼 2⁄
2 +

𝑍1−𝛼 2⁄ √𝛿 ∑ 𝑤ℎ𝑝ℎ(1−∑ 𝑤ℎ𝑝ℎ)+
𝛿2

4
𝑍𝛼 2⁄

2𝐻
ℎ=1

𝐻
ℎ=1

1+𝛿𝑍𝛼 2⁄
2     (4.10) 

 

Where 𝛿 =  ∑ (
𝑁ℎ

𝑁
)

2

(
1

𝑛ℎ
) (1 −

𝑛ℎ

𝑁ℎ
) (

𝑁ℎ

𝑁ℎ−1
)𝐻

ℎ=1 , and 𝑤ℎ =  ∑
𝑁ℎ

𝑁

𝐻
ℎ=1  

Yan and Su (2010) do also propose a stratified score interval when the proportions cannot be 

assumed to be equal. A confidence interval for the overall proportion is obtained by first 

creating individual intervals around the proportions in each stratum. The stratified interval is 

then formed by the weighted sum of the intervals.  

The lower and upper confidence limits for p are given by 

𝐿 = ∑ 𝑤ℎ
𝐻
ℎ=1 (

𝑝ℎ+𝑧𝑦
2/2𝑛ℎ

1+𝑧𝑦
2/𝑛ℎ

−
𝑧𝑦

1+𝑧𝑦
2 𝑛ℎ⁄

√
𝑝ℎ(1−𝑝ℎ)

𝑛ℎ
+

𝑧𝑦
2

4𝑛ℎ
2)     (4.11) 

 

𝑈 = ∑ 𝑤ℎ
𝐻
ℎ=1 (

𝑝ℎ+𝑧𝑦
2/2𝑛ℎ

1+𝑧𝑦
2/𝑛ℎ

+
𝑧𝑦

1+𝑧𝑦
2 𝑛ℎ⁄

√
𝑝ℎ(1−𝑝ℎ)

𝑛ℎ
+

𝑧𝑦
2

4𝑛ℎ
2)    (4.12) 

In order to get an overall confidence level of 1-α, the individual intervals must be 

constructed with an appropriate confidence level. Yan and Su (2010) provide a scheme for 

obtaining both weights and the adjusted confidence level y for constructing the individual 

confidence intervals. The method could unfortunately not be implemented with the weights, 

Nh/N, used in this analysis and the method will not be under consideration. It is worth 

mentioning though because the authors present a nice solution to the problem when the 

proportions are unequal, at least for the situation with an infinite population. The proposed 

score interval performed satisfactory and the coverage rates where close to the nominal 

95% level (Yan and Su, 2010).  

4.2 Simulations 

To assess how the stratified score interval with a finite population correction works some 

simulations will be carried out. Evaluating the stratified score interval only based on the data 

from the ICT usage in Swedish enterprises might not give a clear picture of the performance 

in general. The coverage and mean length are based on random intervals. Assuming we can´t 

ignore the finite population, 50 000 random samples are generated from the 

hypergeometric distribution with parameters (x;N,n,p). Where N is the population size, n is 

the sample size and p is the proportion of success. The population proportion is assumed to 
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be known in this scenario. The sample sizes and stratum sizes resembles that of one from 

the actual survey. The smallest sample sizes relative to stratum size have deliberately been 

left out, to see how the stratified score performs under more normal conditions. The 

samples sizes equals 19, 36, 15 and 18 and the strata sizes equals 312, 148, 74 and 40. The 

proportions are assumed to be equal and the score interval is based on equation (4.9 and 

4.10). The Wald interval is based on equation (3.5) as in the survey. Only large proportions 

above 0.9 are considered in the following simulations and the stratum weights are Nh/N.  

 

Table 3. Stratified score confidence interval, mean length and coverage based on 4 strata                                   
with nh=19,  36, 15 and 18 and Nh=312, 148, 74 and 40. 

p1 , p2 , p3, p4 𝑝̂𝑠𝑡𝑟       C.I. 95%  Mean length Coverage ( % ) 

1, 1, 1, 1,   
Wald 
Score 

 

1  
(1, 1) 
(0.9383, 1) 
 

 
. 
0.06166 

 
. 
100 
 

0.98,0.98,0.98,0.98 
Wald 
Score 

0.98  
(0.9441 ,1.0159) 
(0.9048, 0.9961) 
 

 
0.0511 
0.0877 

 
63.94 
95.23 

0.96,0.96,0.96,0.96 
Wald 
Score1 

 

0.96  
(0.9098, 1.0102) 
(0.8753, 0.9880) 

 
0.0838 
0.1096 

 
72.43 
95.90 

0.94,0.94,0.94,0.94 
Wald 
Score1 

 

0.94  
(0.8791, 1.0010) 
(0.8480, 0.9778) 

 
0.1093 
0.1261 

 
76.92 
96.10 

0.92,0.92,0.92,0.92 
Wald 
Score1 

 

0.92  
(0.8505, 0.9895) 
(0.8220, 0.9663) 

 
0.1281 
0.1417 

 
83.64 
96.01 

0.90,0.90,0.90,0.90 
Wald 
Score1 

 

0.90  
(0.8231 ,0.9769) 
(0.7969, 0.9538) 

 
0.1431 
0.1536 

 
87.19 
95.60 

 

The simulations indicate that the stratified score interval works well when the proportions 

are equal. The coverage rates are around 95 and 96 percent and close to the nominal level. 

The Wald interval shows the expected pattern of decreasing coverage rates as the 

proportions get larger. The coverage rates are ranging from roughly 64 to 87 %. The Wald 

interval is also shorter than the score interval, which of course affect the coverage 

negatively. Increasing the number of stratums to 8 and maintaining the same sample and 

stratum sizes increase the coverage rates for the Wald interval now ranging from 0.6883 

when the proportions are 0.98 and 0.9087 when the proportions are 0.9. The coverage rates 

for the score interval for the same setting are still about the nominal level, 0.95-0.96 

percent.   
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In table 5 the proportions are slightly different. The sample sizes and strata sizes are the 

same as before. The stratified score interval assumes that the proportions are equal. The 

coverage rates for the score interval are consistently higher than the nominal 95 percent 

level. When the proportions are unequal the score interval gets more conservative, at least 

in this case. The score method will assume that the proportions are all equal to the estimate 

of the aggregated proportion. It cannot take the variance of the different proportions into 

account. The Wald interval has poor coverage also in this situation and produce narrower 

intervals compared to the score interval. The results here cannot be generalized but gives a 

picture of how the score interval behaves when the proportions are unequal. The coverage 

rates will depend on sample sizes, the total population and weights. 

 

Table 4. Stratified score confidence interval, mean length and coverage based on 4 strata                                   
with nh=19,  36, 15 and 18 and Nh=312, 148, 74 and 40.  

p1 , p2 , p3, p4 𝑝̂𝑠𝑡𝑟      C.I. 95 %  Mean length Coverage  %  

0.96,0.97,0.98,0.99 
Wald 
Score 

 

0.967  
(0.9183, 1.0162) 
(0.8857, 0.9912) 
 

 
0.0771 
0.0983 

 
0.6219 
0.9611 
 

0.99,.98,0.97,0.96 
Wald 
Score 

0.983  
(0.9547 ,1.0109) 
(0.9090 ,0.9969) 
 

 
0.0413 
0.0860 

 
0.7706 
0.9707 

0.96,0,95,0.94,0.93 
Wald 
Score 

 

0.953  
(0.9013 , 1.004) 
(0.8652 ,0.9845) 

 
0.0864 
0.1145 

 
0.7352 
0.9736 

0.99,0.96,0.93,0.90 
Wald 
Score 

 

0.968  
(0.9360, 1.001) 
(0.8872, 0.9916) 

 
0.0546 
0.1027 

 
0.8508 
0.9872 

0.99,0.98,0.91,0.90 
Wald 
Score 

 

0.971  
(0.9393 ,1.0024) 
(0.8909 ,0.9927) 

 
0.0529 
0.1006 

 
0.8545 
0.9823 
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5. Application on ICT usage in Swedish enterprises 

The suggested score interval is applied on the ICT usage in Swedish enterprises 2013. The 

question of interest is the shares of enterprises that use computers. The score interval is 

compared with the standard Wald interval that is the currently used method for interval 

estimation in the survey. The results are based on a limited collection of the aggregated 

proportions reported in the survey, this due to space considerations. Table 5 and 6 lists the 

estimated stratified proportion, the 95 % confidence interval and the length for the Wald 

and score interval. The data is stratified after industry and size and a total of 19 groups or 

aggregated measures are presented. The number between the brackets refers to the 

number of strata that the groups consist of.  

Table 5. Wald and stratified score confidence intervals. Group, number of strata, estimated                                             
proportion and length of intervals.                                                               

Group  
(# of strata) 

𝑝̂𝑠𝑡𝑟  C.I. 95 % Length 

1            (7) 
Wald 
Score 

1  
(1,1) 
(0.9754, 1) 
 

 
. 
0.0246 
 

2            (7) 
Wald 
Score 

 

1  
(1,1) 
(0.9784, 1) 
 

 
. 
0.0216 
 

3            (7) 
Wald 
Score 

 

1  
(1,1) 
(0.9314, 1) 
 

 
. 
0.0686 
 

4            (7) 
Wald 
Score 

 

1  
(1,1) 
(0.9755, 1) 
 

 
. 
0.0245 
 

5          (11) 
Wald 
Score 

 

1  
(1,1 
(0.9615, 1) 
 

 
. 
0.0385 
 

6           (5) 
Wald 
Score 

 

1  
(1,1) 
 (0.7436, 1) 
 

 
. 
0.2564 
 

7           (12) 
Wald 
Score 

 

1  
(1,1) 
(0.9204, 1) 

 
. 
0.0796 

8            (6) 
Wald 
Score2 

 

1  
(1,1) 
 (0.9646, 1) 

 
. 
0.0354 
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In table 5 the estimated proportions in each strata is equal to 1. In this case the Wald 

interval produces zero width intervals. The length of the intervals is in most cases around 0.2 

and 0.3.  Group 3 and 7 have slightly wider intervals than the majority with a length of 

0.0686 and 0.0796 respectively. The confidence interval for group 5 is considerably wider 

than the rest.  

Table 6 displays the situation when not all proportions are equal. The estimated stratified 

proportions vary between roughly 0.92 and 0.99. In most groups the majority of stratums 

have proportions equal to one. There are some exceptions though. Group 12 and 15 have a 

considerably larger share of proportions other than one compared to the other groups. 

The Wald intervals appear to have shorter length than the score intervals in general. In most 

cases the difference is small though. For group 9, 13 and 19, the length of the Wald interval 

is shorter than for the score interval. The longest intervals are found in group 9 and 12. In 

some instances the upper bound of the Wald interval exceeds one.  
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Table 6.  Wald and stratified score confidence intervals. Group, number of strata, estimated                                             
proportion and length of intervals.                                                               

Group  
(# of strata) 

𝑝̂𝑠𝑡𝑟 CI, 95 % Length 

9      (7) 
Wald 
Score 

0.9410  
(0.8373, 1.0443) 
 (0.7937, 0.9850) 
 

 
0.2070 
0.1913 

10     (19) 
Wald   
Score 

 

0. 9900  
(0.979 , 1.0040) 
 (0.9661, 0.9989) 
 

 
0.0250 
0.0328 
 

 11     (7) 
Wald 
Score 

 

0.9740  
(0.9466, 1.0020) 
 (0.9331, 0.9903) 

 
0.0554 
0.0572 

 12    (7) 
Wald 
Score 

 

0.9476  
(0.8845, 1.0107) 
 (0.8470, 0.9834) 
 

 
0.1262 
0.1364 

  13   (33) 
Wald 
Score 

 

0.9587  
(0.9264, 0.9912) 
 (0.9183, 0.9796) 

 
0.0648 
0.0613 

  14   (13) 
Wald 
Score 

 

0.9813  
(0.9632, 0.9994) 
 (0.9275, 0.9954) 

 
0.0362 
0.0679 

 15      (7) 
Wald   
Score 

 

0.9529  
(0.9174, 0.9884) 
 (0.9042, 0.9778) 

 
0.0710 
0.0736 

 16          (14) 
Wald 
Score 

 

0.9810  
(0.9608,  1.0012) 
 (0.9485, 0.9935) 

 
0.0404 
0.0450 

17      (28) 
Wald 
Score 

0.9819  
(0.9687 ,0.9952) 
 (0.9633 ,0.9912) 

 
0.0265 
0.0279 

 
18      (31)  
Wald 
Score 

 
0.9921 

 
 
(0.9864 ,0.9978) 
 (0.9658 ,0.9982) 

 
 
0.0114 
0.0324 

 
19      (14)  
Wald 
Score 

 
0.9242 

 
 
(0.8812, 0.9673) 
 (0.8756. 0.9548) 

 
 
0.0861 
0.0792 
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6. Conclusions 

The goal of this study was to find a procedure for interval estimation for a weighted sum of 

large proportions that performed better than the standard Wald interval. To this end a 

modified version of a stratified score interval proposed by Yan and Su (2010), which account 

for the finite population was tested.  

Assuming the true proportions are equal the stratified score interval performs better than 

the standard Wald interval in terms of coverage. Based on the simulations, for proportions 

above 0.9, the stratified score interval has coverage probabilities close to the nominal 95 

percent level when the true proportions are equal. Letting the true proportions vary slightly 

increase the coverage rates somewhat for the stratified score interval to reach above 95 

percent nominal level. The standard Wald interval performs much worse in terms of 

coverage for large proportions. Further the stratified score interval does not have the 

inherent problems of the Wald interval, that is intervals stretching outside the limit of [0, 1] 

and zero width intervals when the proportions are exactly zero and one.  

The conclusions are, under the assumption that the true proportions are equal, that the 

stratified score interval in general performs better than the standard Wald interval for large 

proportions. For a question regarding computer usage in Swedish enterprises with 

proportions reaching a hundred percent in most strata the method can be a good 

alternative.  

Only the question of computer usage in Swedish enterprises has been addressed here. The 

survey consists of many other measures that do not render the same extreme values. The 

assumption of equal proportions is obviously not reasonable in many cases. It is difficult to 

say how different the proportions can be in order for the proposed method to work properly 

and if this can be measured and evaluated. Yan and Su (2010) do present an alternative 

method when proportions are unequal. This method could not be implemented due to the 

weighting scheme used here. A natural development of this method would be to find a 

stratified score interval with weights depending on relative stratum size that can be used 

when the proportions are unequal.  
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Appendix  
 
R-code 
 
#simulations  
ph<-c() 
nh<-c() 
Nh<-c() 
 
#Score interval  
 
w<-Nh/sum(Nh) 
pobs<-sum(w*ph) 
Nhh<-Nh/(Nh-1) 
Nhh[which(Nhh==Inf)] <- 0  
m<- sum( (w^2) *(1/nh)*(1-nh/Nh)*Nhh ) 
k<-20000 
CI<-matrix(NA,k,2) 
alpha<-0.05 
z<-qnorm(1-alpha/2) 
 
#loop 
for (i in 1:k){ 
x<-c(rhyper(4,Nh*ph,Nh-Nh*ph,nh)) 
p<-x/nh 
#CI´s 
A<- sum(w*p) + (m*z^2)/2 
B<- (1 + m*z^2) 
C<- m*sum(w*p)*(1-sum(w*p)) 
D<- (m^2*z^2)/4 
L<- (A / B) - (z*sqrt(C + D))/B 
U<- (A / B) + (z*sqrt(C + D))/B 
CI[i,]<-cbind(L,U) 
} 
 
CIcov<-cbind( CI[,1] <= pobs & CI[,2] >= pobs ) 
Covprob<-mean(CIcov);Covprob 
mean(CI[,1]);mean(CI[,2]) 
mean(CI[,2])-mean(CI[,1]) 
 
#Wald interval  
 
w<-Nh/sum(Nh) 
Pobs<-sum(w*ph) 
alpha<-0.05 
z<-qnorm(1-alpha/2) 
Nhh<-Nh/(Nh-1) 
Nhh[which(Nhh==Inf)] <- 0  
k<-20000 
CI<-matrix(NA,k,2) 
 
#loop 
for (i in 1:k){ 
x<-c(rhyper(14,Nh*ph,Nh-Nh*ph,nh)) 
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p<-x/nh  
 
phat<-sum(w*p) 
Vp<-sum((w^2)*(1/nh)*(1-nh/Nh)*Nhh*(p*(1-p))) 
L<-phat-z*sqrt(Vp) 
U<-phat+z*sqrt(Vp) 
CI[i,]<-cbind(L,U) 
} 
 
CIcov<-cbind( CI[,1] <= Pobs & CI[,2] >= Pobs ) 
Covprob<-mean(CIcov);Covprob 
mean(CI[,1]);mean(CI[,2]) 
mean(CI[,2])-mean(CI[,1]) 
 
 
#Confidence intervals 
ph<-c() 
nh<-c() 
Nh<-c() 
 
#Score interval 
w<-Nh/sum(Nh) 
pobs<-sum(w*ph) 
Nhh<-Nh/(Nh-1) 
Nhh[which(Nhh==Inf)] <- 0  
m<- sum( (w^2) *(1/nh)*(1-nh/Nh)*Nhh ) 
alpha<-0.05 
z<-qnorm(1-alpha/2) 
#CI´s 
A<- sum(w*ph) + (m*z^2)/2 
B<- (1 + m*z^2) 
C<- m*sum(w*ph)*(1-sum(w*ph)) 
D<- (m^2*z^2)/4 
L<- (A / B) - (z*sqrt(C + D))/B 
U<- (A / B) + (z*sqrt(C + D))/B 
 
CI<-cbind(L,U);CI 
 
#Wald  confidence interval 
 
w<-Nh/sum(Nh) 
Pobs<-sum(w*ph) 
alpha<-0.05 
z<-qnorm(1-alpha/2) 
Nhh<-Nh/(Nh-1) 
Nhh[which(Nhh==Inf)] <- 0  
 
phat<-sum(w*ph) 
Vp<-sum((w^2)*(1/nh)*(1-nh/Nh)*Nhh*(ph*(1-ph))) 
L<-phat-z*sqrt(Vp) 
U<-phat+z*sqrt(Vp) 
CI<-cbind(L,U);CI 
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