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1 Introduction

This work describes a time-dependent theoretical study of dissociative excita-
tion (DE) of the molecular HeH+ ion. Using wave packet analysis, a numerical
model for calculating the cross section of the DE process will be developed. The
theoretical background for this project will include molecular physics such as elec-
tron scattering and dissociation dynamics as well as numerical methods, compu-
tational physics and data processing techniques. This means that we have to be
able to change quickly from theoretical physics to a computational viewpoint and
both parts must be given equal attention. This paper will therefore, in addition to
the theoretical part, include detailed descriptions of the computational methods
that are used.

In this section the DE process as well as other related electron scattering pro-
cesses will be presented. Results of earlier studies of DE of HeH+, both theoretical
and experimental, will also be discussed and these will serve as a background for
this work.

1.1 Dissociative excitation and related processes

Dissociative excitation is the process wherein a molecular ion is promoted to
an electronically excited state by collision with an electron. If the excited state has
a repulsive potential it dissociates immediately to fragments where one is neutral
and the other ionic. The general formulation of the DE process for a diatomic
molecular ion is given as follows,

AB+ + e–→ (AB+)∗ + e–→ A + B+ + e–. (1.1.1)

Dissociative excitation is generally studied using beam methods and the most
common target is the hydrogen molecular ions [1]. While other related electron
scattering processes have been relatively well studied, DE has not received equal
attention.

In this work the DE process is studied theoretically for the HeH+ system. The
ground state of HeH+ is the X1Σ+state with an equilibrium distance of about
1.45 a0, and it dissociates to He + H+. In order for dissociation into other atomic
fragments to occur, the system must be promoted into an electronically excited
state. Here, the following direct DE process of HeH+ is studied:

HeH+(v) + e–→ (HeH+)∗ + e–→ H + He+ + e–. (1.1.2)
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Figure 1: Schematic diagram of the dissociative excitation process in the case of the
HeH+. The system is excited by inelastic electron scattering from the ground
state to an excited state (HeH+)∗ from where the system dissociates to He+

+ H.

The direct DE process for HeH+ is displayed schematically in Fig. 1.
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Figure 2: The potential energy curves of the ground state (X1Σ+), the first excited
state (a3Σ+) and the second excited state (A1Σ+) of HeH+. Both excited
states dissociate to He+ + H, while the ground state dissociates to He + H+.

The first excited stated of HeH+ is the a3Σ+ state, which is repulsive and
dissociates into H + He+. The second excited state is the A1Σ+ state, which is
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also a repulsive state dissociating into the same limit. The potential energy curves
of the ground state and the two first excited states are displayed in Fig. 2.

Dissociative excitation of HeH+ has previously been studied experimentally [3,
4] as well as theoretically [2] and the results form the background for this work.
More details on the earlier work will be given in the following section. A property
of interest is the absolute cross section of the reaction. By both experiment and
theory it has been shown that the cross section of DE of HeH+ is very small
compared to that of Dissociative recombination (1.1.4) at low energy [2, 3, 4].

Experimental studies have revealed the existence of an alternate DE pathway,
called Resonant dissociative excitation [4]. This process has also been studied
theoretically [5]. This reaction is expressed as follows for HeH+

HeH+(v) + e–→ (HeH)∗∗ → He + H+ + e–. (1.1.3)

When an electron is excited to a molecular
orbital far away from the nuclei, the elec-
tron experiences almost a spherical poten-
tial and the potential energy curve can be
approximated using the energy levels of the
hydrogen atom, i.e.,

Vn(R) ∼ Vion(R)− 1

2n2
,

where the principal quantum number n =
2, 3, 4, . . . .
However, the potential that the nuclei expe-
riences is not completely spherical and the
deviation causes a quantum defect, µ`(R),
such that an effective principal quantum
number is obtained,

neff` = n− µ`(R).

Here, ` is the electronic angular quantum
number. An infinite series of states, called
Rydberg states, exist where the potential
of the individual states is given by

Vnc(R) = Vion(R)− 1

2(n− µ`(R))2
.

In this process the electron is cap-
tured into a Rydberg state to an ex-
cited ionic core, forming a doubly ex-
cited neutral state, which in turn au-
toionizes back into the ground elec-
tronic state of HeH+. If it is autoion-
izing to a nuclear continuum level, it
will have enough energy to dissoci-
ate. It should be noted that this re-
action has a threshold of about 10 eV,
while the direct process has a thresh-
old above 16 eV [4].

Another dissociation process is
Dissociative recombination (DR), which
for HeH+ is given by

e– + HeH+ → (HeH)∗ → He + H
(1.1.4a)

→ (HeH)∗∗ → He + H.
(1.1.4b)

In (1.1.4) the collision with the elec-
tron occurs at a low energy compared
to the DE in (1.1.2). Below 10 eV,
the DR reaction of HeH+ is driven by
capture into Rydberg states with po-
tential energy curves situated below
the ground ionic state [Eq. (1.1.4a)].
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Above 10 eV, the energy is high enough for capture into the doubly excited state
of HeH [Eq. (1.1.4b)] and the DR and the resonant DE are competing processes [4].

1.2 Earlier work on HeH+

As it was mentioned in subsection 1.1 there has not been as much work done
on DE as on other related processes, such as dissociative recombination. The most
common systems studied for DE is the hydrogen molecular ion. However, since
HeH+ is a quite small system, it has also gained some previous attention. In the
scope of this project both earlier experimental and theoretical works have been
studied in order to gain insight in the DE process of HeH+ and have been used as
comparison for the result obtained using our method. Some of these studies have
already been referred to in subsection 1.1.

One of the earliest published experimental studies on DE of HeH+ is the work
of F. B. Yousif and J. B. A. Mitchell from 1989 [3]. In this work the DR and
DE processes of HeH+ were studied using a merged beam method. Yousif and
Mitchell reported the cross sections for DE in the 0 − 40 eV energy range. The
results showed an excitation energy threshold at about 20 eV for the low extraction
conditions, where the ions are believed to be mainly in the ground electronic state.
Series of sharp and very narrow peaks in the cross section were detected in the
20− 26 eV energy region. The narrowness of the peaks was suggested to originate
from a process where the electron is trapped instantaneously into doubly excited
neutral resonant states.

The findings of Yousif and Mitchell prompted the theoretical study by A. E.
Orel, T. N. Rescigno and B. H. Lengsfield III [2]. In this work the DE of HeH+

was studied in the 20 − 26 eV energy region using the complex Kohn variational
method [10, 14]. Excitation cross sections for the X1Σ+ → a3Σ

+ transition were
computed in overall 2Σ+ and 2Π symmetries as well as the total cross section
at the equilibrium separation (R0 = 0.77 Å). The calculation of the fixed-nuclei
cross section resulted in a series of sharp peaks on a quite flat background. Closer
inspection showed that most of the peaks were Feshbach resonances associated
with energetically closed Rydberg states in this energy region. One of the peaks,
situated at 24 eV, did not belong to the above mentioned category but proved
to be a core-excited shape resonance. Further, in the work of A. E. Orel, T. N.
Rescigno and B. H. Lengsfield III [2], it was shown that an auto-ionization process
from an doubly excited state, as suggested by Yousif and Mitchell, was not a viable
explanation of the narrowness of the peaks observed in the experiment.

The computations in 2Σ+ symmetry were also preformed at R = R0 ± 0.05 Å
in order to investigate how the cross section responds to changes in the internu-
clear distance. The results from these calculations showed that the widths of the
resonance peaks and the value of the background cross section remained almost
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unchanged. The positions of the peaks were shifted with the excitation energy of
the X1Σ+ − A1Σ+ transition.

In this work a formula for calculating the averaged fixed-nuclei cross section
was also derived as follows

σ(E0) =

∫
σ(E0, R)[χν0(R)]2dR. (1.2.1)

Here χν0 is the initial target vibrational wave function and σ(E0, R) is the "fixed-
nuclei cross section". This formula, which will be presented and explained in more
detail in the Theory subsection 3.2, will be implemented in the scope of the present
work.

When an averaged total excitation cross section was calculated, theR-dependence
of the excitation thresholds could therefore be included as a shift with respect to
R0 and the sharp peaks observed in the fixed-nuclei cross section were smoothened
out.

A second experimental study of the DE of HeH+ was performed by C. Strömholm
et al. [4]. In this work the DR and DE processes for HeH+ were studied and the
absolute cross sections were determined for energies below 40 eV. The experiments
were performed using CRYRING at the Manne Siegbahn Laboratory at Stock-
holm University. Contrary to the results of the cross section obtained by Yousif
and Mitchell, it was found here that the absolute cross section for the direct DE
process was basically constant in the 21−37 eV energy region. Furthermore, it was
found that there was an alternate DE pathway with an energy threshold already
at 10 eV. In the reaction the electron gets caught up in a neutral doubly excited
state which auto-ionizes into He + H+. This reaction is the resonant dissociative
excitation presented in subsection 1.1 and, as described above, it competes with
the DR process.

The results of the direct DE cross section for the HeH+ of the above mentioned
studies are displayed in Fig. 3.
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Figure 3: Previous results for the cross section of the direct DE of HeH+ obtained from
the experimental works of Yousif and Michell [3], Strömholm et al. [4] and a
theoretical study of Orel et al. [2].

The results of Strömholm et al. were soon discussed in a theoretical study by
A. E. Orel and K. C. Kulander [5]. Here the resonant DE mechanism was inves-
tigated using the complex Kohn variational method and wave packet calculations.
The theoretical results showed good agreement with the experimental results for
the dissociation threshold, however, the calculated cross sections exhibited a mag-
nitude nearly twice as large as that of the experimental data. It was discussed that
this discrepancy may have been caused by non-adiabatic coupling of the resonant
states to excited ion states1.

1In later work [6], the cross section was formulated without a factor 2, suggesting that the
original expression may have been incorrect.
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2 Theory

In this section the theoretical background relevant for this work will be related.
The aim of this project is to develop a model using wave packets to describe the
direct dissociative excitation process of HeH+. Therefore the main focus of this
section will be to present the background of wave packet dynamics and the theory
necessary to understand the derivation of the cross section in section 3.

Even though it is far too complex to be related in full in the scope of this
work some basic theory of electron scattering as well as a short introduction to the
complex Kohn variational method (CKVM) [10] is included in this section. Neither
of these topics are comprised in the head part of this project, nevertheless, I feel
that a basic understanding is necessary to fully grasp the theoretical background
of this work.

This section starts with a brief introduction of the Born-Oppenheimer (BO)
approximation [11] followed by a short presentation of quantum chemistry, where
specifically the Multi-Reference Configuration Interaction (MRCI) method is dis-
cussed. Note that atomic units (~ = e = me = a0 = 1) are used throughout. For
more details, conversion factors etc. see Appendix III - Conventions and notations.

2.1 The molecular Schrödinger equation and the Born-Oppenheimer
approximation

If the spin-orbit and relativistic interactions of the nuclei and electrons is ne-
glected, the molecule can be described by means of the time-independent Schrödinger
equation:

Hψ(R, r) = Etotψ(R, r). (2.1.1)

For this molecular system the Hamiltonian can be partitioned in the following
manner

H = TN +He + VNN, (2.1.2)

where TN is the kinetic energy operator of the nuclei and VNN is the nuclear re-
pulsion term. He, called the electronic Hamiltonian, consists of the kinetic energy
operator of the electrons as well as the electron-electron and electron-nuclei inter-
actions. These terms can be expressed as follows.

TN = − 1

2µ
∇2

R ≡ Tvib + Trot

He = −1

2

N∑
i

∇2
i −

2∑
α

N∑
i

Zα
rαi

+
N∑
i

N∑
j>i

1

rij

VNN =
ZαZβ
R

.

(2.1.3)
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Here the vibrational part of the nuclear kinetic energy operator is given by

Tvib = − 1

2µR2

∂

∂R

(
R2 ∂

∂R

)
(2.1.4)

and the rotational part by

Trot = − 1

2µR2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂

∂ϕ2

]
. (2.1.5)

The reduced mass for nuclei α and β is defined as µ = mαmβ/(mα+mβ). Indices i
and j refer to the electrons and Zα is the atomic number of nuclei α. It is common
to introduce a center of mass coordinate system. For a diatomic molecule with the
center of mass will be situated in between the two nuclei, coinciding with the origin
and the motion of N electrons is given by r = {r1, r2, . . . , rN} and the internuclear
distance is defined by R = |Rα−Rβ|. Here Rα and Rβ are the positions of atoms
α and β. rαi represents the distance between nuclei α and electron i and rij is the
distance between electrons i and j. rαi, rij and R are illustrated in Fig. 4 for a
diatomic molecule with 2 electrons.

z

r12

rα1

rβ2
rβ1rα2

e–

e–

O

R
α β

Figure 4: Schematic figure of a diatomic system with two electrons.

The eigenvalues to Eq. (2.1.1) can be obtained by the following expansion

ψ(R, r) =
∑
i

ψni(R)ψei(R, r), (2.1.6)

where ψni only depends onR. Here ψei are the solutions to the electronic Schrödinger
equation at fixed internuclear distances,

Heψei(R, r) = Ui(R)ψei(R, r). (2.1.7)

The nuclear repulsion term VNN is usually included in He and the electronic Hamil-
tonian depends parametrically on the internuclear distance, R. The eigenvalues
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to the electronic Schrödinger equation for the diatomic molecule form a potential
energy curve Ui(R) of state i.

If Eqs. (2.1.2) and (2.1.6) are substituted into Eq. (2.1.1), the following expres-
sion is obtained

[TN(R) +He(R, r)]
∑
i

ψni(R)ψei(R, r) = E
∑
i

ψni(R)ψei(R, r). (2.1.8)

Multiplying Eq. (2.1.8) with the electronic wave function ψ∗ej and integrating
over electronic coordinates yields the following expression∑

i

〈ψej|TN +He|ψniψei〉 =
∑
i

〈ψej|E|ψniψei〉. (2.1.9)

Further, using the orthonormality, 〈ψei|ψej〉 = δij, and Eq. (2.1.7) we get∑
i

〈ψej|TN|ψniψei〉+ Ujψnj = Eψnj, (2.1.10)

where j = 1, 2, 3, . . . . Eq. (2.1.10) is referred to as the nuclear Schrödinger equa-
tion in the adiabatic representation. Evaluation of the first term of Eq. (2.1.10)
will give rise to an infinite number of coupled differential equations for ψni. These
equations cannot generally be solved analytically and approximations of the system
must be made.

The Laplace operator of TN will affect both ψni and ψei as they both are R
dependent. Because of this the chain rule have to be applied on ψniψei and we get
derivatives of both the nuclear and the electronic wave functions,

〈ψej|TN|ψniψei〉 = − 1

2µ
〈ψej|∇2

R|ψniψei〉 = − 1

2µ
〈ψej|∇R · (∇Rψniψei + ψni∇Rψei)〉

= − 1

2µ

[
〈ψej|ψei〉∇2

Rψni + 2〈ψej|∇Rψei〉 · ∇Rψni + 〈ψej|∇2
Rψei〉ψni

]
.

(2.1.11)
Within the BO approximation we assume that TN operator has no effect on the

electronic wave function, meaning that non-adiabatic coupling elements 〈ψej|∇Rψei〉
and 〈ψej|∇2

Rψei〉 can be neglected. This is a feasible assumption as the large dif-
ference in particle weight makes the nuclei practically stationary compared to the
electrons. Using the BO approximation and the orthonormality of the electronic
states, Eq. (2.1.10) is simplified to

(TN + Uj(R))ψnj(R) = Eψnj(R). (2.1.12)

Thus, Eq. (2.1.12) provides a set of uncoupled equations for ψni, which is the
nuclear wave function for the state i. The total wave function can now be obtained
according to Eq. (2.1.6)

ψ(R, r) = ψn(R)ψe(r, r). (2.1.13)
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The Born-Oppenheimer approximation is usually valid for electronic ground
states that are well separated in energy from excited states. But for certain sys-
tems the BO approximation is not always applicable. A system engaged with an
ionic bond will experience problems; at equilibrium distance the bond is essentially
ionic A+B−, however, at large separation the bond will instead be of covalent type.
At a certain internuclear distance the potential energy curve of the covalent state
becomes very close to the energy of the ionic state. For a diatomic molecule the po-
tential energy curves of the same electronic symmetry are not allowed to cross [12],
instead an avoided crossing is formed where the electronic wave function change
character going from one side of the avoided crossing to the other. Close to the
avoided crossing the non-adiabatic couplings are large and the BO approximation
breaks down.

2.2 Quantum chemistry and electronic structure calcula-
tions

The electronic Schrödinger equation can only be solved analytically for one-
electron systems, such as the H+

2 . For larger systems we have to rely on approx-
imate methods. These methods use the variational principle to find approximate
solutions to the electronic Schrödinger equation, so called trial wave functions,
ΦT, that are energy minimized with respect to some parameters in the trail wave
function. The energy for normalized wave functions are given as

Ee = 〈ΦT|He|ΦT〉, (2.2.1)

We assume that the wave function, Φ0 gives the lowest energy E0 and we want
to determine the parameters of this wave function. A solution to the electronic
Schrödinger equation has to obey the Pauli principle, i.e. the total wave function
must change sign under permutation of electrons. To construct wave function that
behaves in this manner a Slater determinant is set up,

Φ(1, 2, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) . . . φN(1)
φ1(2) φ2(2) . . . φN(2)
...

... . . . ...
φ1(N) φ2(N) . . . φN(N)

∣∣∣∣∣∣∣∣∣ . (2.2.2)

The elements in the Slater determinant are one-particle molecular orbitals (MO’s)
made up of a spin part and a spatial part, so called spin orbitals,

φ(i) = ψ(ri)|s〉. (2.2.3)

The spin function, has two possible alignments, α and β.
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There are many approaches to derive a trial wave function where the main
difference is how the electron correlation is included.

One method is the Configuration Interaction (CI) method. In standard CI the
wave function is made up a linear combination of Slater determinants, also called
Configurational State Functions (CSF’s), corresponding to different configurations
where electrons have been excited, a so called configurational expansion.

ΨCI =
∑
i

ciΦi (2.2.4)

The first term in the expansion corresponds to a Slater determinant where all
electrons are in their ground state configuration. The Slater determinants in the
following terms correspond to different configurations where electrons are excited
from the ground state, see Fig. 5. In full CI all possible configurations are included
and therefore, if a complete basis set is used, ΨCI = Ψexact. The coefficients ci
are determined independently using variational methods, but the determinants
are held constant. The coefficients give the weight of the determinants, i.e. the
configurations.

+ + + + . . .

Figure 5: CSF from linear combination of Slater determinants.

In Multi-Configurational Self-Consistent Field (MCSCF) not only the expan-
sion coefficients but also the molecular orbitals used to construct the Slater de-
terminants are optimized. This way the most important configurations can be
included in the wave function. As implied by the name the MCSCF optimization
is an SCF procedure2. MCSCF methods have problems with slow convergence
and the difficulty to recover correlation energy. One option to remedy some of the
electron correlation problem is to allow for configurations where there are some or-
bitals that are singly occupied, i.e. excitation of electrons in the active space (see

2The orbital equations are solved in an iterative manner for an initial guess and after each
iteration a new solution can be formed. When the convergence criteria (self-consistency) is
reached, the procedure will terminate.
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Fig. 6). This is called a near-degeneracy effect, meaning that there are configura-
tions with approximately the same energy. This process will recover some of the
correlation energy and with appropriate choice of configurations, one can manage
to include correlation that is of importance to different properties. The remaining
part of the electron correlation cannot be obtained using MCSCF methods. MC-
SCF is thus a method highly reliant on the appropriate choice of configurations
and orbitals used. Another important factor in MCSCF is the definition of the
size of the active space; depends on the system at hand. The orbitals for Multi
Reference Configuration Interaction (MRCI) are usually obtained from MCSCF
calculations. Multi-reference refers to the CSF’s in the method being generated
with several determinants. In MRCI electrons are excited into virtual orbitals and
by combining MRCI with MCSCF, correlation lacking from the MCSCF methods
can be recovered.

Active space

Virtual orbitals

Core orbital, doubly occupied

Figure 6: The active space is defined differently depending on the method. Sometimes
all occupied orbitals, as well as some of the lower unoccupied orbitals are
included (CASSCF). The active space can also be divided, where each part
includes a restricted number of orbitals (RASSCF).

2.3 Electron scattering

The dissociative excitation process is essentially an inelastic electron scattering
process where, if scattering energy is sufficient, the system is promoted into an
excited electronic state. This means that the momentum of the incoming electrons,
kn, is not equal to that of the scattered electrons, kn′ , as opposed to an elastic
scattering process where kn = kn′ . The final state of the system is dependent of
the amount of scattering energy that is supplied; if it is small the system might
only reach the first excited state or the scattering process becomes elastic, if it is
great the system can reach higher excited states.
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A scattering process where excitation is possible is said to be multi-channel
and the different final states are called channels. A channel is called open if the
supplied scattering energy is sufficient to bring the system into the state. In this
work we only consider the first and second excited electronic states of HeH+(see
Fig. 2), in other words n′ = 1, 2 and we study the inelastic scattering 0 → 1 and
0→ 2.

It is common to study the electron scattering process through means of the
differential cross section and for the transition n→ n′ it is given by(

dσ

dΩ

)
n→n′

=
kn′

kn
|fn′n(k′,k)|2. (2.3.1)

For the simplest case, elastic scattering, the differential cross section is simply
given as the ratio of the scattered particles into the solid angle, dΩ, and the
total number of incoming electrons per unit area. This ratio can be given by the
square of the scattering amplitude, fn′n(k′,k). Another observable related to the
differential cross section is the total cross section, which is obtained by integrating
the differential cross section over all solid angles,

σn→n′ =

∫ (
dσ

dΩ

)
n→n′

dΩ =

∫
kn′

kn
|fn′n(k′,k)|2dΩ. (2.3.2)

In this work the total inelastic scattering cross section will be calculated.

2.4 The adiabatic-nuclei approximation

In calculation of elastic electron scattering it is commonly assumed that the
nuclei can be held fixed in space throughout the complete scattering process. This
is a feasible approximation, as the velocity of the incoming electron is considerably
faster than the rotational and vibrational motions of the nuclei [8]. It cannot be
freely assumed that the fixed-nuclei approximation is applicable for all scattering
processes. However, electron scattering with a sufficiently high impact energy will
make the motions of the nuclei seem slow compared to the incident electron and
the nuclei position can be assumed fixed during the process. This theory is known
as the adiabatic-nuclei approximation and it was first derived by Chase 1956 [7]
in the field of nuclear physics. The model of Chase has proven to be successfully
applicable also to electron-molecule scattering processes [8].

The original adiabatic-nuclei approximation is derived not only for fixed nuclei
but also for fixed target electrons. However, in electron-molecule scattering, these
electrons must be allowed to move if we want to describe electronic excitation of
the target. Based on the existing adiabatic-nuclei approximation, Shugard and
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Hazi [9] developed in the 1970s a more general theory for the non-resonant scat-
tering process of an electron and a neutral molecule where target excitation was
included. The studied inelastic scattering processes, such as

AB(ni, vi, Ji) + e–→ AB(nf , vf , Jf ) + e–. (2.4.1)

Here, (nj, vj, Jj) refer to the quantum numbers of the electronic, vibrational and
rotational levels of the system.

The outlines of this theory, that are also applicable to electron-molecular ion
scattering processes, will now be presented.

The adiabatic-nuclei approximation is applicable in scattering processes where
the incoming electron has a high energy [9]. When the nuclei are fixed the total
Hamiltonian will reduce to the electronic Hamiltonian,

H
(N+1)
el ψ(r, r′,R) = ε(R)ψ(r, r′,R). (2.4.2)

Here, r and r′ refer to the coordinates of scattered and the target electrons, respec-
tively. The discrete solutions to Eq. (2.4.2) correspond to bound electronic stated
of the neutral molecular system. A set of continuum solutions are also obtained,
describing the scattering in the fixed-nuclei framework. The solutions to target’s
bound states are given by electronic Schrödinger equation,

H
(N)
el φn(r′,R) = εn(R)φn(r′,R). (2.4.3)

The scattering solutions ψ+
εΩni

of Eq. (2.4.2) can be formulated asymptotically in
the following manner

ψ+
εωni

∼
r→∞

k1/2
n (2π)−3/2

∑
n′

[
δnn′eikn·r − (2π)2(knkn′)−1/2tn′n(ω′, ω;R)

eikn′r

r

]
φn′(r′,R),

(2.4.4)
where the incident and final momentum vectors, kn and kn′ of the scattering
electron have their orientations specified by ω and ω′, respectively. The initial
and final electronic states are labeled by n and n′ and tn′n(ω′, ω;R) is the fixed-
nuclei scattering amplitude, as defined by Shurgard and Hazi. The total electronic
energy, ε, is determined by

ε = εn(R) +
1

2
k2
n (2.4.5)

and energy conservation gives

1

2
k2
n′ =

1

2
k2
n + εn(R)− εn′(R). (2.4.6)

For a system such as this, the total scattering wave function can be obtained
as follows [9]

Ψ+
EniνiJi

(r, r′,R) = ψ+
εΩni

(r, r′,R)FniνiJi(R). (2.4.7)
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Here FnνJ are the nuclear functions of the Born-Oppenheimer product, defined as
φn(r′,R)FnνJ(R), and satisfy[

− 1

2µ
∇2

R + εn(R)− w̄nνJ
]
FnνJ(R) = 0, (2.4.8)

where w̄nνJ is the exact molecular energy in the adiabatic approximation.
The use of the Born-Oppenheimer product is motivated by the assumption that

there is a lack of dynamical (non-adiabatic) coupling between the electron and the
nuclei. This also implies that there is no such coupling in the target.

In Eq. (2.4.7) we have a wave function, consistent with the adiabatic-nuclei
approximation, where the electronic part is given by the fixed-nuclei function that
describes the electron-molecule scattering process in the fixed-nuclei framework.
For this scattering process, the incoming electron will not contribute to the po-
tential affecting the nuclei. The reason for this is the limited time the electron
is present in the vicinity of the nuclei. This implies that FniνiJi(R) is the ro-
vibrational wave function of the target’s initial state [9].

Knowing the expression for the total wave function enables us to determine the
total scattering amplitude [9]

TnfνfJf ,niνiJi(Ω
′Ω) =

∫
dRF ∗nfνfJf (R)tnfni(Ω

′,Ω;R)FniνiJi(R)

(
kf
knf

)
ei(knf−kf )r.

(2.4.9)
Here knf and kni are the fixed-nuclei momenta of the final and initial states, re-
spectively and they are related by Eq. (2.4.6), where kni ≡ ki [9]. The direction of
the incident and final momentum vectors, ki and kf , is specified by Ω and Ω′.

There are some concerns with formulating the total scattering amplitude as
in Eq (2.4.9). In order for the calculated scattering amplitude to have a physical
relevance, we must have a system where the approximation we have made truly is
valid. Such a system would require that the fixed-nuclei momenta and the total
momenta of the final states are almost equal,

kf ≈ knf , (2.4.10)

and that the potential energy curves of final and initial states are parallel in the
Franck-Condon region, i.e in the region where the initial vibrational wave func-
tion of the target molecule is non-zero [9]. These conditions apply for a system
where the energy of the incoming electron is sufficiently higher than the excitation
threshold and we get

TnfνfJf ,niνiJi(Ω
′Ω) =

∫
dRFnfνfJf (R)tnfni(Ω

′,Ω;R)FniνiJi(R). (2.4.11)
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Thus, for systems where the impact energy is higher than the excitation threshold,
the T -matrix elements can be obtained by averaging the fixed-nuclei amplitude
over the initial and final ro-vibrational wave functions [9].

Up to this point, the electron scattering process has been considered on the
energy shell. However, for reasons soon to be apparent, it is also common to
evaluate the scattering amplitude off the energy shell.

When the electron scattering is calculated off the energy shell, we have that
kf 6= knf and ε′ 6= ε, i.e. the initial and final energy of the scattered electrons are
not the same [9].

Due to the restrictions mentioned earlier, the on-shell T -matrix fails to describe
the electron scattering process near the excitation threshold. Therefore, an im-
proved formulation of the scattering amplitude evaluated off the energy shell was
also suggested by Shugard and Hazi,

TnfνfJf ,niνiJi(Ω
′Ω) =

∫
dRFnfνfJf (R)tnfni(ε

′Ω′, εΩ;R)FniνiJi(R). (2.4.12)

Here, the T-matrix has been expressed off-shell with the energy ε defined as in
Eq. (2.4.5) and ε′ given as

ε′ = εnf (R) +
1

2
k2
f . (2.4.13)

Here tnfni(ε′Ω′, εΩ;R) is the fixed-nuclei scattering amplitude expressed off the
energy shell. In the case where the impact energy is greater than the excitation
threshold, the off-shell quantities are the same as their corresponding on-shell
forms.

The off-shell formulation should give better results for systems where the scat-
tering process occurs close to the excitation threshold as the off-shell kf does not
have to be restricted by Eq. (2.4.10). However, the off-shell tnfni must be calcu-
lated separately for each ro-vibrational state, as the quantum numbers (nfνfJf )
are needed to determine the magnitude of kf .

2.5 Complex Kohn variational method

The fixed-nuclei electron scattering calculations were performed using an alge-
braic variational technique called the Complex Kohn variational method (CKVM) [10].
A trial wave function is created and inserted into a functional which, in turn, is
minimized with respect to certain parameters. The basic approach of the CKVM
for scattering of an electron-ion system with a spherically symmetric, short-range
potential V (r) will now be illustrated [10]. The partial wave radial Schrödinger
equation can be given in the following manner

LΦ` = 0, (2.5.1)
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where L is given by

L =

[
−1

2

d2

dr2
+
`(`+ 1)

2r2
+
Z

r
+ V (r)− k2

2

]
. (2.5.2)

A functional, commonly called the Kohn functional I, is defined as follows

I[Φ`] =

∫ ∞
0

Φ`(r)LΦ`(r)dr. (2.5.3)

The functional I[Φ`] = 0 if Φ` represents the exact solution. If instead a trial
function, Φt

` 6= Φ`, is inserted in Eq. (2.5.3), the functional will differ from zero. It
is assumed that the following boundary conditions will apply to Φ`:

Φ`(0) = 0

Φ`(r →∞) ∼ F`(kr) + λG`(kr).
(2.5.4)

The Coulomb functions F` and G` are linearly independent solutions of Eq. (2.5.1)
for the case where V (r) = 0 and λ is a linear coefficient. In order to study how
the functional, I, behaves when a trial function is inserted in Eq. (2.5.1), we first
have to define the deviance of Φt

` from the exact solution Φ`,

δΦ`(r) ≡ Φt
`(r)− Φ`(r). (2.5.5)

δΦ`(r) is called the residual and it applied to the following boundary conditions

δΦ`(0) = 0

δΦ`(r →∞) ∼ λG`(kr).
(2.5.6)

If Eq. (2.5.5) is substituted into the Kohn functional the following result is obtained
after some simplification [10]

δI = −k
2
Wδλ+

∫ ∞
0

δΦ`LδΦ`dr. (2.5.7)

The Wronskian, W , is given by

W = F`(r)
d

dr
G`(r)−G`(r)

d

dr
F`(r) (2.5.8)

and δλ = λ− λt, where λt is a variational parameter and λ is the exact value. For
a more detailed derivation of Eq. (2.5.7) refer to e.g [10]. Eq. (2.5.7) is called the
Kato identity and it approximates λ with a stationary principle in the following
manner:

λs = λt +
2

kW

∫ ∞
0

Φt
`LΦt

`dr. (2.5.9)
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Eq. (2.5.9) can be solved with a suitable trial wave function. Such a function could
have the following form,

Φt
`(r) = f`(r) + λtg`(r) +

n∑
i=1

ciφi (2.5.10)

where φi are square-integrable (L2) functions and the functions f` and g` have the
form

f`(r →∞) ∼ F`(kr)

g`(r →∞) ∼ G`(kr).
(2.5.11)

If the above conditions apply, then the coefficients λt and ci can be determined by

∂λs

∂ci
=
∂λs

∂λt
= 0. (2.5.12)

Then, if Eq. (2.5.10) is substituted into Eq. (2.5.9) and the derivative with respect
to ci is taken, the following expression is obtained∫ ∞

0

φiLΦt
`dr = 0, i = 1, . . . , n. (2.5.13)

A corresponding expression is obtained for λt as∫ ∞
0

g`LΦt
`dr = 0. (2.5.14)

If the basis functions φi and g` are taken as a single set {φi} i = 0, . . . , n, where
φ0 ≡ g` and the linear parameters {λt, c1, . . . , cn} are denoted by a vector c we get

c = −M−1s. (2.5.15)

Here M is a matrix constituted by the following elements

Mij =

∫ ∞
0

φiLφjdr, i, j = 0, . . . , n (2.5.16)

and the vector s is constituted by the elements

si =

∫ ∞
0

φiLf`dr, i = 0, . . . , n. (2.5.17)

Substitution of Eq. (2.5.15) into Eq. (2.5.9) yields the following expression for the
stationary value λs

λs =
2

kW

[∫ ∞
0

f`Lf`dr − sM−1s

]
. (2.5.18)

19



In the case where g` is an outgoing function h+
` (r), we get

h+
` (r) =

i[F`(kr)− iG`(kr)]√
k

(2.5.19)

where W = −1/k and Eq. (2.5.18) provides the formulation of the T -matrix,
λs = T s` = eiδ` sin δ` [10]

T s` = −2

[∫ ∞
0

f`Lf`dr − sM−1s

]
. (2.5.20)

The method is named after the symmetric matrix M which has become a complex
and at real energies the inverse is in general nonsingular [13].

In the generalization of CKVM to electron-molecule scattering the calculations
are performed using the fixed-nuclei approximation. A trial function for multi-
channel electron scattering in this framework is expressed as follows [10]

Φn =
∑
n′

A(χn′Fn′n) + Θn. (2.5.21)

Here, the first sum includes all energetically open N -electron target states, χn
and the orbital function of the scattered electron, Fn′n. The operator, A, anti-
symmetrizes Fn′n into the target states. (n, n′) represent the incident and final
channels respectively. n′ is used to label all the quantum numbers needed to de-
scribe the physical state of the composite system. The second term of Eq. (2.5.21)
is constituted of a set of (N + 1) CSF’s ,

Θn =
∑
K

dnKΘK , (2.5.22)

which are orthogonal to the χn′Fn′n terms.
The orbital function of the scattered electron can be expanded further as [10]

Fn′n =
∑
i

cn
′n
i φi +

∑
`m

[fn
′

` (kn′r)δ``0δmm0δn′n + T n
′n

``0mm0
gn

′

` (kn′r)]
Y`m(r̂)

r
, (2.5.23)

where φi is a set of L2 functions, i.e they are square-integrable, and Y`m is a
spherical harmonic. fn′

` and gn′

` are the continuum wave functions describing the
incoming and outgoing scattered electron. kn′ is the energy conserved channel
momenta, k2

n′/2 = E − En′ , where En′ is the energy of the target state molecule
and E is the total energy. The T -matrix elements, T n′n

``0mm0
, are fundamental to

the calculation of the cross section. They depend on the internuclear distance as
well as the energy of the scattered electron, E. Here, the T -matrix elements are
calculated on the energy shell.
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2.6 Wave packet methods

It was seen in the Introduction that in DE the inelastic electron scattering will
transfer the molecular ion from the ground state to an excited electronic state. The
excited system will have a specific total energy depending on the electron scattering
energy and the initial state of the target ion and the process is usually described
time-independently. However, in order to easily incorporate quantum effects and
follow the process in time, the full time-dependent Schrödinger equation has to
be solved and the wave packets are the solutions. However, before introducing
the definition of a wave packet it makes sense to first discuss why it needs to be
constructed.

The time-dependent Schrödinger equation (TDSE) for the radial nuclear mo-
tion of a diatomic molecule is given by

i
∂

∂t
Ψ(R, t) = HΨ(R, t), (2.6.1)

where the nuclear Hamiltonian operator is defined as

H = TN + U = − 1

2µ

∂2

∂R2
+ U(R). (2.6.2)

This Hamiltonian can be recognized as the nuclear Hamiltonian as it is, by part
constituted, of the nuclear kinetic energy operator for a diatomic molecule (see
Eq. (2.1.2)). Note that in order to obtain Eq. (2.6.2) the rotational part of TN
is neglected. The solution to Eq. (2.6.1) is the time-dependent wave function,
Ψ(R, t), which by using separation of variables, can be expressed in the product
form

Ψ(R, t) = ψ(R)φ(t). (2.6.3)

Substituting Eq. (2.6.3) into Eq. (2.6.1) yields

i
dφ(t)

dt
ψ(R) = − 1

2µ

d2ψ(R)

dR2
φ(t) + Uψ(R)φ(t). (2.6.4)

Dividing Eq. (2.6.4) though with ψ(R)φ(t) gives

i
1

φ(t)

dφ(t)

dt
= − 1

2µ

1

ψ(R)

d2ψ(R)

dR2
+ U. (2.6.5)

For Eq. (2.6.5) to be valid, both the right-hand side and the left-hand side must
be equal to a constant. This separation constant is commonly called E for reasons
that will soon become clear. Eq. (2.6.5) can then be divided into two separable
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equations in the following manner

i
dφ(t)

dt
= Eφ(t)

− 1

2µ

d2ψE(R)

dR2
+ UψE(R) = EψE(R).

(2.6.6)

The second equation of (2.6.6) we recognize as the time-independent Schrödinger
equation for the nuclear motion.

The solution of the time-dependent equation of (2.6.6) is solved easily, with
multiplication from both sides with dt followed by integration over t, to

φ(t) = φ0e
−iEt. (2.6.7)

Following Eq. (2.6.3) the solution to the TDSE is given by

Ψ(R, t) = ψE(R)e−iEt, (2.6.8)

where the factor φ0 can be included into ψE(R). Commonly the time-independent
solutions are normalized in such a way that∫ ∞

−∞
|Ψ(R, t)|2dr = 1. (2.6.9)

It is evident that Eq. (2.6.3) is time-dependent, however, the probability density
|Ψ(R, t)|2 is not,

|Ψ(R, t)|2 = Ψ∗Ψ = ψ∗E(R)eiEtψE(R)e−iEt = |ψE(R)|2. (2.6.10)

If the probability density is not time-dependent, it implies that the probability
of finding the system in a specific state is time-independent, i.e. Ψ(R, t) is a
stationary state. However, if Eq. (2.6.8) is taken as a particular solution of the
TDSE and the general solution is given by a linear combination of several particular
solution, we get for the simplest case that

Ψ(R, t) = aψE1(R)e−iE1t + bψE2(R)e−iE2t. (2.6.11)

The probability density of Eq. (2.6.11) is given as follows

|Ψ(R, t)|2 = |a|2|ψE1(R)|2 + |b|2|ψE2(R)|2 + 2Re
{
a∗bψ∗E1

(R)ψE2(R)e−i(E2−E1)t
}
.

(2.6.12)
The first two terms of Eq. (2.6.12) are independent of time, however, the third,
which is the interference term of the two first, is time-dependent. Thus, we have
a solution of the TDSE that exhibits time-dependence also for the probability
density. The interference term of Eq. (2.6.12) is what is called a wave packet
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- a wave packet is the superposition of states of different energies, which
is required in order to get a solution that has time-dependence in the
probability density and other observable quantities [17].

The general solution of the TDSE is given as

Ψ(R, t) =
∞∑
n=1

anψn(R)e−iEnt. (2.6.13)

Eq. (2.6.13) applies when the system has bound potential, resulting in solutions
that only exist at certain discrete energies. The energy range in which physically
interesting solutions can be found is called the spectrum; i.e. Eq. (2.6.13) gives the
solution in a discrete spectrum. If the system constitutes an unbound potential,
the interesting solutions are found in a continuous energy interval, rather than at
discrete energies. The wave function for systems like this is given by

Ψ(R, t) =

∫ ∞
0

a(E)ψE(R)e−iEtdE. (2.6.14)

Thus, the solution of the TDSE in a continuous spectrum is given by Eq. (2.6.14).
When we know why it is needed, it makes sense to derive an actual wave packet.

The simplest TDSE is the given for the free particle and the Hamiltonian for this
system is defined as

H = − 1

2µ

∂2R

∂R2
, (2.6.15)

where the potential function is independent of the position and is taken as U(R) =
0. The time-independent solution is given as

ψE(R) = e±ikR, (2.6.16)

with the energy eigenvalues E forming a continuous spectrum

E =
k2

2µ
=
p2

2µ
. (2.6.17)

By Eq. (2.6.8) a time-dependent particular solution to the TDSE is obtained as

Ψ(R, t) = eikRe−iEt = ei(kR−
k2

2µ
t), (2.6.18)

where k goes from −∞ to ∞. Substituting Eq. (2.6.19) into Eq. (2.6.14) we get
the solution in the continuous spectrum

Ψ(R, t) =

∫ ∞
−∞

a(k)ei(kR−
k2

2µ
t)dk. (2.6.19)
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The initial condition of the wave packet, i.e. for t = 0, can easily be determined
from Eq. (2.6.19),

Ψ(R, 0) =

∫ ∞
−∞

a(k)eikRdk. (2.6.20)

To determine the function a(k) it is convenient to use Fourier transformation, Ap-
pendix I. Eq. (2.6.20) can rewritten as a Fourier transformation by multiplication
of both sides by e−ik

′R and integrating over R. Using the Dirac delta function
(Appendix I) we get

a(k) =
1

2π

∫ ∞
−∞

Ψ(R, 0)e−ikRdR. (2.6.21)

Thus, Ψ(R, 0) and a(k) are a Fourier pair. The same applies for the general
solution

Ψ(R, t) =

∫ ∞
−∞

a(k, t)eikRdk (2.6.22)

when the function a(k, t) is defined as follows

a(k, t) = a(k)e−i
k2

2µ
t. (2.6.23)

Similarly for a(k, t) we get

a(k, t) =
1

2π

∫ ∞
−∞

Ψ(R, t)e−ikRdR, (2.6.24)

making Ψ(R, t) and a(k, t) another Fourier pair.
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3 Derivation of cross section

With the theoretical background gained in section 2, we can now continue
on to the cross section. In this section a time-dependent expression of the cross
section of DE is derived from the more common time-independent form. With the
time-dependent method, wave packet propagation is used to compute the cross
section of dissociative excitation. A similar approach has been used to obtain the
cross section of photodissociation.

This section begins with a short description of the work performed on pho-
todissociation.

3.1 Cross section of photodissociation

Photodissociation is the process wherein a molecule is excited from the ground
electronic state to an excited electronic state by absorption of a photon. The
molecule then dissociates, either directly, or in a delayed fashion, depending on
the nature of the potential of the excited state. Molecular processes like photodis-
sociation can be studied using wave packets, a method that was seen early in the
work of E. Heller in the 1970s [15, 16].

A property called the total absorption cross section σ, which provides a measure
of the amount of light, with energy ω (atomic units), that can be absorbed by the
system, can be used to study the photodissociation process. The cross section
can be formulated time-independently or time-dependently. The derivation from
a time-independent description to a time-dependent will now be given.

The total cross section of photodissociation can be defined in the following
manner [15],

σ(ω) ∝ ω|〈ψ−(E)|µtd|χi〉|2 ≡ ωΣ(ω), (3.1.1)

Here ψ−(E) is the energy-normalized scattering eigenstate with the energy E =
Ei + ω. Furthermore, |χi〉 is the initial vibrational state and µtd is the transi-
tion dipole matrix element connecting the initial and final electronic states3. An
alternative expression of Σ can also be obtained by

Σ(ω) = 〈φ|ψ−(E)〉〈ψ−(E)|φ〉 (3.1.2)

where |φ〉 ≡ µtd|χi〉. The outgoing scattering states form a complete basis, i.e.

1 =

∫
|ψ−(E ′)〉〈ψ−(E ′)|dE ′. (3.1.3)

3The elements of the transition dipole matrix are give by µtd = 〈φf |µ̂|φi〉.
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Thus {ψ−(E ′)} can be rewritten using the Dirac delta function in the following
manner,

δ(E −H) = δ(E −H) · 1 = |ψ−(E)〉〈ψ−(E)|, (3.1.4)

where H is the full Hamiltonian of the excited state. Substituting Eq. (3.1.4) into
Eq. (3.1.2) yields

Σ(ω) = 〈φ|δ(E −H)|φ〉 = Tr{δ(E −H)|φ〉〈φ|}. (3.1.5)

Remembering that the Fourier transform of the Dirac-delta function is given by
(see Appendix I subsection A.2)

δ(E −H) =
1

2π

∫ ∞
−∞

eit(E−H)dt, (3.1.6)

Σ(ω) can be expressed in the following manner

Σ(ω) =
1

2π

∫ ∞
−∞
〈φ|eit(E−H)|φ〉dt =

1

2π

∫ ∞
−∞

eiEt〈φ|e−iHt|φ〉dt

=
1

2π

∫ ∞
−∞

eiEt〈φ(0)|φ(t)〉dt,
(3.1.7)

where φ(t) is defined as follows

φ(t) = e−iHt|φ〉. (3.1.8)

From Eq. (3.1.7) it is evident that

the total photodissociation cross section is proportional to the Fourier
transform of the overlap of the initial wave function φ(0) and the wave
function when it has been propagated on the energy surface of the excited
state [15].

An alternative formulation is that the Fourier transform of the autocorrelation
of a wave packet propagated on the potential energy surface is the total cross
section.

With the total cross section defined according to Eq. (3.1.7), it can further be
shown that |A(t)| is even around t = 0, where A(t) ≡ 〈φ(0)|φ(τ)〉 is defined to be
the correlation function [16]. Using Eq. (3.1.8) it is straight forward to show that

A∗(t) = A(−t). (3.1.9)

From Eq. (3.1.9) it follows that Σ(ω) is real [16].
More details of the autocorrelation function can be found in Appendix I sub-

section A.3.
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3.2 Cross section of dissociative excitation

For direct dissociative excitation it is common to calculate the cross section
time-independently and for HeH+ there are both experimental [3, 4] and theoretical
results [2]. Specifically, the formula for calculating the total fixed-nuclei excitation
cross section of direct dissociative excitation time-independently, obtained from
the work of Orel et al., Eq. (1.2.1), was presented in the Introduction. In this
section, we will make a somewhat extended description of this expression.

Further, we will also derive a time-dependent expression for calculating the
cross section.

3.2.1 Derivation of delta-function approximation

In the work Orel et al. [2] a time-independent expression for a total cross section
was derived by means of a delta-function approximation and using the fixed-nuclei
excitation cross sections. We will now give a more detailed description of this
expression.

In the complex Kohn variational method, the fixed-nuclei excitation cross sec-
tions are given by [2]

σ̃Λ
nn′(E,R) =

2π

E

∑
`0`m0m

|TΛ,nn′

`0`m0m
(E,R)|2. (3.2.1)

Here TΛ,nn′

`0`m0m
(E,R) is the fixed nuclei T-matrix on the energy shell.

We will use the work of Heller [15] on photodissociation (see also subsection 3.1)
as a reference and firstly assume that a time-independent expression for the exci-
tation cross section of DE can be formed by applying the adiabatic-nuclei approx-
imation (compare to Eq. (3.1.1) and the adiabatic-nuclei definition of the on-shell
T-matrix, Eq. (2.4.11)),

σΛ
nn′(E) ≈ 2π

E

∑
`0`m0m

∫ E

E0

|〈ψE′(R)|TΛ,nn′

`0`m0m
(E,R)|χν0(R)〉|2dE ′. (3.2.2)

Here ψE′ is an energy-normalized continuum function. Λ = A1, A2, B1 refers the
overall symmetry of the scattering and n, n′ = 0, 1, 2 are the electronic states of
the target. In this work 0 → 1 and 0 → 2 scattering is studied. E refers to the
scattering energy and E ′ is the energy of the dissociative nuclear state. Hence,
the energy of the ejected electron is given by E −E ′. E0 is the asymptotic energy
the repulsive potential energy curve. Further, we also approximate the energy-
normalized continuum wave function with the Dirac-delta function,

ψE′(R) ≈

(√
dU

dR

∣∣
RE′

)−1

δ(R−RE′), (3.2.3)
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where U(R) is the potential energy curve excited ionic state and RE′ is the classical
turning point at energy E ′. Inserting Eq. (3.2.3) into Eq. (3.2.2) yields

σΛ
nn′(E) ≈ 2π

E

∫ E

E0

(
dU

dR

∣∣
RE′

)−1 ∑
`0`m0m

|TΛ,nn′

`0`m0m
(E,RE′)|2[χν0(RE′)]2dE ′. (3.2.4)

Hence, we can write Eq. (3.2.4) as

σΛ
nn′(E) =

∫ E

E0

(
dU

dR

∣∣
RE′

)−1

σ̃Λ
nn′(E,RE′)[χν0(RE′)]2dE ′. (3.2.5)

Making the following change of variables,

U(RE′) = E ′

dE ′ =
dU

dRE′
dRE′ ,

(3.2.6)

yields the following expression

σΛ
nn′(E) =

∫ ∞
RE

σ̃Λ
nn′(E,R)[χν0(R)]2dR. � (3.2.7)

From Eq. (3.2.7) we see that the total fixed-nuclei excitation cross section is mul-
tiplied with of the square of the vibrational wave function of the initial state of the
target and integrated over the internuclear distance, R. This is the formula used
by Orel et al.4 in their previous study of direct dissociative excitation of HeH+ [2].

3.2.2 Derivation of a time-dependent method

We also wish to derive a time-dependent model for calculating the cross section
of DE. Therefore, we will use the time-independent formulation given in Eq. (3.2.2)
as a starting point of this derivation.

By expanding the integrand Eq. (3.2.2) becomes

σΛ
nn′(E) =

2π

E

∑
`0`m0m

∫ E

E0

〈χν |[TΛ,nn′

`0`m0m
(E,R)]∗|ψE′〉〈ψE′ |[TΛ,nn′

`0`m0m
(E,R)]|χν〉dE ′.

(3.2.8)
Further, assuming that the continuum functions form a complete basis we can
write, similarly to Eq. (3.1.4),

|ψE′〉〈ψE′ | = δ(E ′ −H) =
1

2π

∫ ∞
−∞

eit(E
′−H)dt. (3.2.9)

4In the previous formula by Orel et. al. the lower bound of the integral was not RE′ but
a small internuclear distance for which the vibrational wave function is close to zero. This,
however, has small influence on the final result.
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Substituting Eq. (3.2.9) into Eq. (3.2.8) yields

σΛ
nn′(E) =

2π

E

∑
`0`m0m

∫ E

E0

〈χν |[TΛ,nn′

`0`m0m
(E,R)]∗eit(E

′−H)[TΛ,nn′

`0`m0m
(E,R)]|χν〉dtdE ′

(3.2.10)
Eq. (3.2.10) is time-dependent and the solution can be described with a wave
packet (see subsection 2.6). The wave packet has the following initial condition,

ΨΛ,nn′

`0`m0m
(E, t = 0, R) = TΛ,nn′

`0`m0m
(E,R)χν(R) (3.2.11)

Upon substitution of Eq. (3.2.11) into Eq. (3.2.10) the following expression is
obtained

σΛ
nn′(E) =

2π

E

1

2π

∑
`0`m0m

∫ E

E0

∫ ∞
−∞

eiE
′t〈ΨΛ,nn′

`0`m0m
(E, 0, R)|e−iHtΨΛ,nn′

`0`m0m
(E, 0, R)〉dtdE ′,

(3.2.12)
where we have that

ΨΛ,nn′

i,j (E, t, R) = e−iHtΨΛ,nn′

`0`m0m
(E, 0, R). (3.2.13)

The autocorrelation function can be formed as

AΛ,nn′

`0`m0m
(E, t) = 〈ΨΛ,nn′

`0`m0m
(E, 0, R)|ΨΛ,nn′

`0`m0m
(E, t, R)〉. (3.2.14)

Eqs. (3.2.13) and (3.2.14) are substituted into Eq. (3.2.12) and we note that upon
application of the inverse Fourier operator on the integrand yields

1

2π

∫ ∞
−∞

eiE
′tAΛ,nn′

`0`m0m
(E, t)dt = F−1{AΛ,nn′

`0`m0m
(E, t)} = aΛ,nn′

`0`m0m
(E,E ′). (3.2.15)

The time-dependent expression for the cross section is thus given as

σΛ
nn′(E) =

2π

E

∑
`0`m0m

∫ E

E0

aΛ,nn′

`0`m0m
(E,E ′)dE ′, (3.2.16)

and the total cross section is obtained by summation over all symmetries,

σnn′(E) = σA1

nn′(E) + σA2

nn′(E) + 2σB1

nn′(E). (3.2.17)

We thus obtain

σΛ
nn′(E) =

2π

E

1

2π

∑
`0`m0m

∫ E

E0

∫ ∞
−∞

eiE
′t〈ΨΛ,nn′

`0`m0m
(E, 0, R)|ΨΛ,nn′

`0`m0m
(E, t, R)〉dtdE ′.

(3.2.18)
This is the time-dependent method that will be implemented and tested in the
present study of direct DE of HeH+.
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4 Computational Details

In this section computational details on the electronic structure calculations
and electron scattering calculations that form the input for the calculation of the
cross section will be given. The choice of symmetry in which these calculations
are preformed will also be briefly explained.

Further, the implementation of the time-independent and time-dependent ex-
pressions for calculating the cross section of DE, as given in subsection 3.2, will be
described. We will implement two methods for calculating a the cross section time-
independently; the fixed-nuclei cross section averaged over the initial vibrational
wave function [Eq. (3.2.7)] (the delta-function approximation), as well as the cross
section obtained by projection on energy-normalized continuum wave functions
[Eq. (3.2.2)]. And one time-dependent wave packet method [Eq. (3.2.18)] will be
tested.

4.1 A note on symmetry

It is common to characterize a molecule by its symmetry. Which symmetry
group (point group) a molecule belongs is determined by how it is affected by
symmetry operations such as rotation around different axes, reflection in mirror
planes etc. Thus, in order to decide which point group a molecule belong to, the
symmetry elements of the structures have to be decided. The easiest way to assign
the correct point group to a molecule is to follow a common ’yes-no’ table5.

The symmetry operations of each point group can be described by the irre-
ducible representations. The irreducible representation "+1/− 1" this means that
the symmetry operation is symmetric/antisymmetric. Each set of irreducible rep-
resentations corresponds to an overall symmetry, such as A1, A2, B1, etc. The
irreducible representations of the C2v point group is displayed in table 4.1.1.

Table 4.1.1: Irreducible representations for a molecule of C2v symmetry. C2 denotes
the principal rotation axis and σ the two mirror planes.

C2v E C2(z) σv(xz) σv(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

5Such as the one present on page 167 in Kettle, S. F. A., Symmetry and Structure, (Wiley,
New York, 1985).

30



The HeH+ molecule is linear and does not have inversion symmetry. This
means that we should assign it the C∞v point group. However, this means that
the HeH+ molecule has an infinite number of irreducible representations. There-
fore, we have assigned the molecule the C2v point group for all computational
purposes. Thus there will be four possible symmetries; A1, A2, B1 and B2. The
Σ+ in C∞v symmetry corresponds A1 symmetry, the Σ− corresponds to A2. The
two components of the Π-states will fall into the the B1 and B2 symmetries, while
the two components of the ∆-states will go into A1 and A2 etc.. Since B1 and B2

will give identical contribution we only need to calculate one of them and include
it twice in the final result.

4.2 Structure calculations

The electronic structure calculations were performed using the aug-cc-pVQZ [19]
basis set for He and the aug-cc-pVTZ [20] basis set for H. One extra diffuse d-
functions was also added on He, resulting in a total of 106 functions.

Using these basis sets a SCF calculation on the ionic ground state was per-
formed. Then a full CI calculation was preformed on the three lowest excited
states of the ion. From the full CI, natural orbitals are computed.

All the possible excitations of the three electrons within the ten lowest natural
orbitals form the reference configurations for the MRCI calculation. Additional
single external excitations are also included.

4.3 Electron scattering calculations

The electron scattering calculations, using CKVM [10], are performed in A1,
A2 and B1 symmetries, using the same target wave functions as the ones used
in the MRCI calculations. Scattering is calculated at the following internuclear
distances R (in a0):

R = 1.0, 1.1, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5

1.55, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3,

2.4, 2.5, 2.6, 2.7, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8.

The energy interval of the scattering calculations is spanning from 15 eV to 38.9
eV in steps of 0.1 eV.

From each calculation the total fixed-nuclei elastic and inelastic scattering cross
sections, T -matrices etc. are obtained. The size of the T-matrices are connected to
the number of open channels, i.e the energy, and the number of (`,m)-pairs that
are included in the calculation. If N (`,m)-pairs are included in the calculation,
and only one channel is open, then the size of the T-matrix is N ×N . For higher
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energies, when two or three channels are open, the size of the T-matrix will double
and triple, respectively.

The electron scattering calculations for the respective symmetries were per-
formed for the following (`,m)-pairs:

A1 : (`,m) = (0, 0), (1, 0), (2, 0), (3, 0), (4, 0)

(5, 0), (6, 0), (2,−2), (3,−2), (4,−2)

(5,−2), (6,−2), (4,−4), (5,−4), (6,−4)

A2 : (`,m) = (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)

B1 : (`,m) = (1,−1), (2,−1), (3,−1), (3,−3)

(4,−1), (4,−3), (5,−1), (5,−3), (6,−1)

(6,−3)

Thus, in the present study scattering with partial wave with ` ≤ 6, |m| ≤ 4 are
included.

4.4 Wave packet calculations

In the time-dependent expression for the cross section of DE, wave packet
propagation is used, as described by Eq. (3.2.18). The initial condition made up
of the v = 0 vibrational wave function and a T-matrix element [see Eq. (3.2.11)].

As the purpose is to test if the cross section of the DE of HeH+ can be calcu-
lated using our suggested time-dependent model, this calculation will be performed
only for a simple model system where the the two first T-matrix elements in B1

symmetry for the X1Σ+ → a3Σ+ transition are included. This result will be an
indication of the feasibility of the model.

The parameters giving the best convergence are dr = 0.01 and dt = 0.12
(see Appendix II - Convergence testing of the wave packet model). The wave
packet is then propagated for 3000 time steps, using a propagation method based
on the Crank-Nicholson method [18].

4.5 Time-independent calculations

As there is a previous theoretical result [2] of the cross section of HeH+ obtained
time-independently, it is meaningful to compute this quantity and compare the
results. It is also interesting to compare the different approaches to calculate the
time-independent cross section. Within the scope of this project we have chosen
to implement two different methods to compute the cross section of DE time-
independently.
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The expression given by Eq. (3.2.7) will give a total cross section averaged
over the initial vibrational wave function. It was presented in the work of Orel
et al. and here the fixed-nuclei excitation cross sections, calculated according to
Eq. (3.2.1), are used. In this method we have to make the delta-function approx-
imation described in subsection 3.2. Nevertheless, as the fixed-nuclei excitation
cross sections are available from the scattering calculation output, this method
has the advantage that we do not have to use the T-matrix elements directly.
This greatly reduces the amount of data that has to be used in the calculation.
Therefore, we can obtain the total time-independent cross section according to
Eq. (3.2.17).

This method will also be implemented using only the first two T-matrix el-
ements in B1 symmetry. Thus obtaining a partial cross section only for these
two elements. We do this in order to compare with the cross section obtained
time-dependently.

An alternative way, is to use Eq. (3.2.2), where the cross section is obtained by
projection on the energy-normalized continuum wave functions [Eq. (3.2.3)]. Here,
the individual T-matrix elements are also used directly, however, because of the
projection on the eigenstates of the continuum wave function it means we avoid
making a delta-function approximation. Using this method, we will calculate a
partial the cross section in B1 symmetry, and compare this result with the result
obtained from the time-dependent model.
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5 Results

5.1 Fixed-nuclei cross section

In order to calculate the total cross section using Eq. (3.2.7), the fixed-nuclei
inelastic excitation cross section for a certain internuclear distance, σ̃Λ

nn′(E,R) is
needed. σ̃Λ

nn′(E,R) is computed for the complete E-grid for each R and the result
at 1.45 a0 (near equilibrium distance) for A1 symmetry is displayed in Fig. 7.
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Figure 7: The fixed-nuclei cross section for A1 symmetry at internuclear distance 1.45
a0. The fixed-nuclei cross section is clearly influenced by the resonance
process. The X1Σ+ → a3Σ+ transition is displayed to the left and the
X1Σ+ → A1Σ+ transition to the right. Observe that here the cross section
is given in atomic units.

The peaks that can be seen in Fig. 7 are a result of the resonant process that
is competing with the direct process. In order to obtain a cross section that only
includes the direct DE, resonances are removed. The result of this treatment is
shown for A1 symmetry at 1.45 a0 in Fig. 8.
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Figure 8: The resonances are removed and the result is spline onto the same R-grid as
before. For A1 symmetry at 1.45 a0, this treatment removes the resonance
behavior. Observe that here the cross section is given in atomic units.

From Fig. 8 we can see that when the resonances are removed the cross section
quite smoothly follows the background. This procedure is repeated for all R and
symmetries. After this has been done we can calculate the averaged fixed-nuclei
cross section can be calculated both with and without including the resonances.
Thus we can see how much the total cross section is affected by the resonances.
More details on the subject of resonances will be given in subsection 5.2.

5.2 Effect of resonances

Along with the direct DE there are occurring resonant processes in which the
excited electron is temporarily captured into a Rydberg state from where it even-
tually autoionizes to H + He+. (For low energies, Resonant dissociative excitation
where the system autoionizes to He + H+ can also occur.) Fig. 9 illustrates the
resonance behavior at high and low energies, respectively.
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Figure 9: At low energies the the electron can be captured into one of the Rydberg
states associated with the a3Σ+ state and the system autoionizes to He +
H+. At higher energies, the electron can be captured into a Rydberg state
associated with the A1Σ+ state. This results in autoionization to He + H+

The resonant process occurs naturally for electron scattering processes like DE.
Thus, we would have to include both direct DE and resonant processes, as well
as any interactions of the Rydberg states with the continuum, to exactly describe
the full reaction mechanism.

The output of scattering calculations will include both the direct and the res-
onant process. However, in this project we are only focusing on the direct DE
process and thus the contribution from the resonant states are removed. There
are more and less sophisticated methods to deal with the resonances. Here, a
somewhat "brute force" method, consisting of removing any data points in the
scattering output where there are resonance behavior, is employed. The data set
without the resonances are then splined onto the same R-grid as the original data.

5.3 Total cross section of DE obtained using the delta-function
approximation

Using the fixed-nuclei excitation cross sections, σ̃Λ
nn′(E,R), calculated with the

full T-matrix obtained from the complex Kohn variational method, we calculated
an averaged fixed-nuclei cross section using Eq. (3.2.7) without removing the res-
onances. Upon averaging over the square of the initial vibrational wave function
(v = 0) the result displayed in Fig. 10 was obtained.
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Figure 10: Total fixed-nuclei cross section averaged over the square of the initial vi-
brational wave function. The total is given as the sum of the cross section
of the X1Σ+ → a3Σ+ and X1Σ+ → A1Σ+ transitions. The cross section
suffers from clear resonance behavior.

Evidently there there are sharp structures from the resonant states over the
entire energy interval. Additionally there are clear jumps at the onset of the
X1Σ+ → A1Σ+ cross section. This clear definition of energy thresholds could
possibly be remedied by carrying out the electron scattering calculations using a
closer spacing on the internuclear distance grid. This is something that was not
examined in this project. Instead, additional splining was used to remove this
behavior.

The resonances were then removed and the splined data was averaged over the
v = 0 vibrational wave function and the result displayed in Fig. 11 is obtained.
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Figure 11: The removing of the resonances results in a much smoother total cross sec-
tion. There are still some jumps in the cross section around the energy
thresholds but we can clearly follow the trend of the total averaged fixed-
nuclei cross section.
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Figure 12: The total averaged cross section is compared with the experimental result
of Strömholm et al. [4] and the theoretical result of Orel et al. [2]. Our
computed result shows quite good agreement with the experiment.

The total cross section obtained in the above described manner is compared
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with the experimental result of Strömholm et al. [4] in Fig 12. We can see that
our theoretical result shows quite good agreement with the experimental result.

A partial cross section with only the two first T-matrix elements, was also com-
puted for the X1Σ+ → a3Σ+ transition in B1 symmetry. The result is displayed
in Fig. 13. This result will be compared with the more accurate cross section com-
puted using the time-independent and time-dependent methods described above.
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Figure 13: Partial cross section obtained using only specific T-matrix elements. Here
T-matrix elements 1 and 2 in B1 symmetry for theX1Σ+ → a3Σ+ transition
were included.

5.4 Time-independent cross section using the energy-normalized
continuum functions

A time-independent cross section was also calculated with only the two first T-
matrix elements for theX1Σ+ → a3Σ+ transition inB1 symmetry using Eq. (3.2.2).
The result is displayed in Fig. 14.
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Figure 14: Cross section obtained by projection on the energy-normalized eigenfunc-
tions [Eq. (3.2.2)]. Here T-matrix elements 1 and 2 in B1 symmetry for the
X1Σ+ → a3Σ+ transition were included.

5.5 Time-dependent results

With the time-dependent wave packet method, a cross section was calculated
using the first two T-matrix elements for the X1Σ+ → a3Σ+ transition in B1

symmetry. The result is displayed in Fig. 15.
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Figure 15: Time-dependent cross section obtained with wave packet method
[Eq. (3.2.18)] for 3000 time steps. T-matrix elements 1 and 2 in B1 symme-
try for the X1Σ+ → a3Σ+ transition were included.
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5.6 Comparison of time-dependent and time-independent
methods

The results of the time-independent calculations using the delta-function ap-
proximation and the projection on the energy-normalized continuum wave func-
tions are compared with the results of the time-dependent method. The cross
sections are displayed in Fig. 16
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Figure 16: Comparison of the result using the time-dependent model and the cross
sections obtained time-independently. Here, only T-matrix elements 1 and
2 in B1 symmetry for the X1Σ+ → a3Σ+ transition were used.
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6 Discussion

7 Concluding Remarks

7.1 Further applications of method

A Appendix I

A.1 Fourier transformation

Fourier transformation is a useful tool when dealing with functions such as
the Delta function and the Autocorrelation function. Therefore, it makes sense to
introduce the Fourier transform before presenting the details of any these functions.
The Fourier transform of the function f(t) is defined in terms of the angular
frequency, ω, in the following manner

f̃(ω) =

∫ ∞
−∞

f(t)e−iωtdt. (A.1.1)

An abbreviated formulation using the Fourier operator is given as

f̃(ω) = F{f(t)}. (A.1.2)

For a function f(t) fulfilling the condition of being piecewise continuos and rapidly
decaying to 0 as |t| → ∞ the Eq. A.1.1 is defined for all ω ∃ R. An inverse Fourier
transform, i.e. moving from ω-space back to t-space, is defined as follows

f(t) =
1

2π

∫ ∞
−∞

f̃(ω)eiωtdω. (A.1.3)

Eq. (A.1.3) can also be expressed using the Fourier operator in the following man-
ner

f(t) = F−1{f̃(ω)}. (A.1.4)

An important property of the Fourier transform is the Convolution theorem. If
the convolution integral is defined as

f ∗ g =

∫ ∞
−∞

f(t′)g(t− t′)dt′, (A.1.5)

the Fourier transform of Eq. (A.1.5) is given as

F{f ∗ g} = f̃(ω)g̃(ω). (A.1.6)
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In principle, taking the Fourier transform of the convolution integral is the same as
taking the Fourier transform of the individual functions separately. The proof of
the Convolution theorem will be presented after the delta function is introduced.
From Eq. (A.1.6) the inverse transformation follows trivially. Making the variable
substitution ξ = t− t′ it can be found that Eq. (A.1.5) is commutative.∫ ∞

−∞
f(t′ − ξ)g(ξ)dξ = g ∗ f (A.1.7)

Another useful feature of the Fourier transform is given by the Fourier integral
theorem,

f(t′) =
1

2π

∫ ∞
−∞

e−iωt
′
dω

∫ ∞
−∞

f(t)eiωtdt. (A.1.8)

Eq. (A.1.8) is developed from the Fourier series and its derivation can be found
e.g. in chapter 15 of Arfken & Weber [21].

A.2 The Dirac delta function

The Dirac delta function can be defined in a general manner by [22]∫ ∞
−∞

f(t)δ(t− t′)dt = f(t′) (A.2.1)

and ∫ ∞
−∞

δ(t)dt = 1. (A.2.2)

In the case where t′ = 0 Eq. (A.2.1) becomes∫ ∞
−∞

f(t)δ(t)dt = f(0). (A.2.3)

The Fourier transform of the delta function is very useful and it is used several
times in this work. It is derived from the Fourier Integral (Eq. (A.1.8)) where the
order of integration has been reversed leading to the following expression,

f(t′) =

∫ ∞
−∞

f(t)

[
1

2π

∫ ∞
−∞

eiω(t−t′)dω

]
dt. (A.2.4)

Following the definition of the delta function, given in Eq. (A.2.1) it is trivial to
see that,

δ(t− t′) =
1

2π

∫ ∞
−∞

eiω(t−t′)dω. (A.2.5)

44



For a more detailed derivation of Eq. (A.2.5) see e.g. chapter 15 Arfken & We-
ber [21].

The usefulness of the delta function will now be illustrated in the proof of the
convolution theorem presented in Eq. (A.1.6) [17]. Starting by taking the inverse
Fourier transform of RHS of Eq. (A.1.6) and expressing f̃ and g̃ also using the
inverse Fourier transform the following expression is obtained

F−1
{
f̃(ω)g̃(ω)

}
=

1

2π

∫ ∞
−∞

{∫ ∞
−∞

f(t′)eiωt
′
dt′
}{∫ ∞

−∞
g(t′′)eiωt

′′
dt′′
}
eiωtdω.

(A.2.6)
By rearranging the order of integration we get

F−1
{
f̃(ω)g̃(ω)

}
=

∫ ∞
−∞

∫ ∞
−∞

f(t′)g(t′′)

(
1

2π

∫ ∞
−∞

eiω(t−(t′+t′′))dω

)
dt′dt′′. (A.2.7)

Using Eq. (A.2.5) the following expression is obtained

F−1
{
f̃(ω)g̃(ω)

}
=

∫ ∞
−∞

∫ ∞
−∞

f(t′)g(t′′)δ(t− (t′ + t′′))dt′dt′′, (A.2.8)

Thus by Eq. (A.2.1)

F−1
{
f̃(ω)g̃(ω)

}
=

∫ ∞
−∞

f(t′)g(t− t′)dt′ � (A.2.9)

A.3 The autocorrelation function

The autocorrelation function, A(t), is convenient to use due to its connection with
the spectra of the wave packet σ(ω). The autocorrelation function is defined in
the following manner

A(t) = 〈Ψ(0)|Ψ(t)〉, (A.3.1)

and it describes the overlap between the initial wave packet and the wave packet
after a time t. By expressing the wave packet is given by the solutions for the
bound state problem,

Ψ(x, t) =
∑
n

cnψn(x)e−iEnt. (A.3.2)

The spectrum of the wave packet is defined as

σ(ω) =
∑
n

|cn|2δ(ω − ω0), (A.3.3)

where ωn = En. The spectrum also can be obtained as the Fourier transform of
the autocorrelation of the wave packet,

σ(ω) =
1

2π

∫ ∞
−∞

A(t)eiωtdt. (A.3.4)

45



This connection between the spectrum and the autocorrelation function can be
proven in the following manner [17]:

σ(ω) =
1

2π

∫ ∞
−∞
〈Ψ(0)|Ψ(t)〉eiωtdt (A.3.5)

By substituting Eq. (A.3.2) into Eq. (A.3.5) we obtain

σ(ω) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

(∑
m

c∗mψ
∗
m(x)

)(∑
m

cne
−iEntψn(x)

)
dx eiωtdt

=
1

2π

∫ ∞
−∞

∑
m,n

c∗mcnδmne
−iEnteiωtdt

=
1

2π

∑
n

|cn|2
∫ ∞
−∞

e−iEnteiωtdt = {using Eq. (A.2.5)}

=
∑
n

|cn|2δ (ω − En)

=
∑
n

|cn|2δ (ω − ω0) �

(A.3.6)

It can be proven that the autocorrelation of the wave packet and the photodis-
sociation cross section, too, are connected through a Fourier transform (see Theory
subsection 3.1).
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B Appendix II - Convergence testing of the wave
packet model

The quality of the result of the wave packet propagation will not only rely
on the input from the scattering calculations, but it will also be dependent on
the numerical stability of the calculations. One way to obtain numerically stable
calculations is to test the convergence of the numerical variables. The numerical
variables for which we have tested the convergence of the model are: the step
size on the R-grid, dr, and the time step size, dt. dr and dt is tested prior to
introduction of the T-matrix elements, using an higher order vibrational wave
function (v = 5, as it was the most sensitive to the numerical instability). Now
the results of the convergence testing will be summarized.

The results of the convergence testing of the autocorrelation function and the
corresponding cross section (i.e. the Fourier transform of overlap of the v = 5
vibrational wave function and the propagated wave function) for variation of dt
are presented in Fig. 17.
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Figure 17: The autocorrelation and the cross section calculated for different dt. We can
see that the result does not seem to be considerably affected by the choice
of dt.

We notice that variation of dt does not affect the convergence of the auto-
correlation and cross section substantially. Therefore, dt = 0.12 is deemed to be
sufficient for our calculations.
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Figure 18: The autocorrelation and the cross section calculated for different dr. We
can see that the result becomes unstable for dr larger than 0.3.

On the other hand, when investigating the step size on the R-grid, we notice
that the convergence for large dr, is quite poor. From Fig. 18, it can be seen
that the wave packet propagation exhibits a very unstable behavior for step sizes
slightly larger than 0.3 (atomic length units).

The reason for this instability can be explained theoretically using a rough
model. As the wave packet is constituted of quantum mechanical waves, the de
Broglie wavelength, λdb, can be used to connect the momentum of the wave packet
to the energy domain. The de Broglie wavelength is connected to the momentum,
p, of a particle by the de Broglie equation6

p =
2π

λdb
, (B.1)

The kinetic energy, E, connected to this momentum is given as

E =
p2

2µ
, (B.2)

6Observe that atomic units are used, hence ~ = me = e = 1.
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where µ is the reduced mass. Assuming that to resolve a wave at least five grid-
points are needed within a wavelength, i.e. λdb ∼ 5dr, Emax, for a certain dr
can be estimated using Eqs. (B.1) and (B.2). In table (B.1) Emax for some val-
ues of dr are displayed. µ is taken as the reduced mass of the system, for HeH+

µ = 0.8× 1822.9 me.

Table B.1: Emax for different dr. The step size and the momentum are given in atomic
units.

dr p Emax (eV)
0.01 125.66 147.33
0.02 62.83 36.83
0.03 41.89 16.37
0.04 31.42 9.21
0.05 25.13 5.89

The energy span for which our model will applied is 15 − 38.9 eV (total en-
ergy). However, no numerical instabilities are visible for dr = 0.02 and dr = 0.03
although, we can see in table (B.1) we should use a dr < 0.02 in order to get proper
resolution of the wave packet. The reason for this could be that the calculation is
not that sensitive as we have not yet introduced the T-matrix elements. Therefore,
we will chose to use dr = 0.01 in our calculations in order to assure full resolution.
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C Appendix III - Conventions and notations

Table C.1: Energy, length and time conversions

Quantity Value au Conversion
Energy 1 Eh 27.21139 eV
Length 1 a0 0.529177 Å
Time 1 a0/(αc) 2.41889× 10−17 s

Table C.2: Fundamental Constants given in SI and atomic units (au).

Quantity Symbol Value and unit SI Value au Expression
Speed of light c 2.99792× 108 m/s 137.036 = α−1

Planck’s constant ~ 1.05457× 105 Js 1 = h/2π

Elementary charge e 1.60218× 10−19 C 1

Mass of electron me 9.10938× 10−31 kg 1

Permittivity of space ε0 8.85418× 10−12 C2/Jm 1/4π

Boltzmann constant kB 1.38065× 10−23 J/K
Fine structure constant α 1/137.036 1/137.036 = e2/(4πε0~c)
Bohr radius a0 5.29177× 10−11 m 1 = ~/(αmec)

Table C.3: Functions

Symbol Significance
Ψ(R, t) Wavefunction of TDSE
ψ(R) Wavefunction of TISE
U(R) Potential function
σ(ω) Cross section
Σ(ω) Cross section (alternative) [15]
δ(t) Dirac delta function
A(t) Autocorrelation function
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Table C.4: Operators

Symbol Significance Expression
∇2 Laplace operator ∇2 = ∂2

∂X2 + ∂2

∂Y 2 + ∂2

∂Z2

F Fourier operator F{f(t)} =
∫∞
−∞ f(t)e−iωtdt

F−1 Inverse Fourier operator F−1{f̃(t)} =
∫∞
−∞ f̃(t)e−iωtdt

Table C.5: Notation

Symbol Significance Expression
i Imaginary unit i2 = −1

µ Reduced mass µ = m1m2/(m1 +m2)

λdb De Broglie wavelength λdb = h/p
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